System Simulation of a GLV Projection System

Timothy P. Kurzweg*, Jose A. Martinez®, Steven P. Levitan®, Abhijit J. Davare*, Michael Bails®, Mark Kahrs®, Donald M. Chiarulli*

*Drexel University, Electrical and Computer Engineering Department
®University of Pittsburgh, Department of Electrical Engineering
*University of California at Berkeley, EECS Department
*University of Pittsburgh, Computer Science Department

kurzweg@ece.drexel.edu
http://www.ece.drexel.edu/ECE/kurzweg
http://kona.ee.pitt.edu/pittcad

Funding: DARPA: AFOSR F49620-01-1-0536 / NSF: CCR-9988319
Grating Light Valve

Incident Reflected

Down ribbons

Diffracted Incident Diffracted

Up ribbons

Ribbons

\(\frac{1}{4} \lambda \)

Oth Mode

\(\pm 1\text{st} \) Mode

\(\pm 3\text{rd} \) Mode

Silicon Light Machines: http://www.siliconlight.com
What is required for an accurate GLV model?

- **Mechanical Models**
 - Accurate bending of the anchored ribbons

- **Electrical Models**
 - Voltage applied between ribbon and substrate
 - Electrostatic attraction between ribbons and substrate

- **Optical Models**
 - Support diffraction and small feature size

Efficient multi-domain CAD tool to support system-level evaluation of mechanics, electronics, and optics and their interactions in a single simulation framework.
PWL Fast Solvers for Electrical and Mechanical Domain

Modified Nodal Analysis

Nodal Analysis (Template base formulation):

Support for: Electronic → Spice like Netlists
Mechanical → Structural Netlists
Micro-Mechanical Modeling

- General motion equation for a mechanical structure
 \[F = [K][U] + [B][\dot{U}] + [M][\ddot{U}] \]

- Reduction to standard ODE form applying Duncan’s state transformation

- Templates for every basic element (e.g. beam)

- Translation from local to global reference using “translation matrix”

- Piecewise linear solver over global ODE representation

\[X = \begin{bmatrix} \dot{U} \\ U \end{bmatrix}; \quad [Mb]\dot{X} + [Mk]X = [E]F \]

\[S_G = A^T S_L A \]

- \(A = \) Translation Matrix
- \(S_G = \) Global Matrix
- \(S_L = \) Local Matrix
Electrostatic Characterization: Nodal Modeling

- Analyze each elemental beam (ie., node) separately

- Each node is an inclined flat capacitor

- Electro-static torque over each node

\[
M_i = F_i \frac{\Delta x_i}{l} x_{i-1} + F_i \frac{\Delta x_i}{l} \frac{\Delta x_i}{\Delta y_i} y_{i-1} \left(\frac{y_i}{\Delta y_i} \ln \left(\frac{y_i}{y_{i-1}} \right) - 1 \right) + F_i \frac{y_i}{l} y_{i-1} \ln \left(\frac{y_i}{y_{i-1}} \right)
\]

\[
F_i = \left(\frac{\varepsilon w V^2}{l} \right) \frac{(y_i - y_{i-1})^2}{\phi_i^2 y_i y_{i-1}}
\]
Optical Model: Rayleigh-Sommerfeld Formulation

- Scalar Diffraction - Rayleigh-Sommerfeld Formulation
 - Common optical propagation techniques (Fraunhofer, Fresnel) are not valid for optical MEM systems
 - Diffractive component $\gg \lambda$
 - Distance to observation plane $\gg \lambda$

$$U2(x, y) = \frac{z}{j\lambda} \int \int U1(\xi, \eta) \frac{e^{jkr}}{r^2} \partial\xi \partial\eta$$

Direct Integration: $O(N^4)$
Efficient Optical Simulation: Angular Spectrum Technique

- Angular Spectrum Algorithm $O(N^2 \log N)$:
 - Decompose wavefront into sum of angled plane waves using FFT
 - Multiply free-space transfer function
 - Map spatial frequencies into tilted coordinate system
 - Use Fourier shifting theorem for offset plane
 - Sum plane waves into wave function with inverse FFT
GLV System Simulation within Chatoyant

- CMOS Amplifier
- PWL Source
- Message Splitter
- Optical GLV (with graphical output)
- Detection Placement
- Detector Placement
- Plane Wave Source
- Mechanical GLV

Electrical
- PWLsource
- Message Splitter
- Scope Output

Mechanical
- PW_MechGLV

Optical
System Simulation - Electrical

- **Electrical Driver**
 - Electrostatic attraction: voltage applied between ribbon and substrate
 - 2 stage CMOS amplifier

![Circuit Diagram]

60 µs switching time
System Simulation - Mechanical

- **GLV**
 - 4 ribbons
 - 60 \(\mu \text{m} \times 5 \mu \text{m} \)
 - 1.5 \(\mu \text{m} \) thick
 - \(\text{Si}_3\text{N}_4 \): density = 3290 Kg/m\(^3\), Young’s modulus = 290x10\(^9\) N/m\(^2\)
 - Air gap is 0.65 \(\mu \text{m} \)
Mechanical Comparison with Ansys

Static Analysis: Ribbon deformation due to 12 V applied voltage

Transient Analysis: Nodal displacements in 11-node ribbon model (60 µs switching time)
Chatoyant and ANSYS Modal Analyses

<table>
<thead>
<tr>
<th>Mode</th>
<th>Chatoyant Modal Frequency</th>
<th>ANSYS Modal Frequency</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.02081E+05</td>
<td>4.02120E+05</td>
<td>0.0097</td>
</tr>
<tr>
<td>2</td>
<td>1.10845E+06</td>
<td>1.10840E+06</td>
<td>-0.0045</td>
</tr>
<tr>
<td>3</td>
<td>2.17312E+06</td>
<td>2.17280E+06</td>
<td>-0.0147</td>
</tr>
<tr>
<td>4</td>
<td>3.59267E+06</td>
<td>3.59140E+06</td>
<td>-0.0353</td>
</tr>
<tr>
<td>5</td>
<td>5.36796E+06</td>
<td>5.36430E+06</td>
<td>-0.0682</td>
</tr>
<tr>
<td>6</td>
<td>7.50006E+06</td>
<td>7.49120E+06</td>
<td>-0.1181</td>
</tr>
<tr>
<td>7</td>
<td>9.99083E+06</td>
<td>9.97200E+06</td>
<td>-0.1885</td>
</tr>
<tr>
<td>8</td>
<td>1.28431E+07</td>
<td>1.28060E+07</td>
<td>-0.2889</td>
</tr>
<tr>
<td>9</td>
<td>1.60610E+07</td>
<td>1.57740E+07</td>
<td>-1.7869</td>
</tr>
<tr>
<td>10</td>
<td>1.96502E+07</td>
<td>1.95340E+07</td>
<td>-0.5913</td>
</tr>
</tbody>
</table>

Largest Percent Error is seen in the 9th Mode: -1.7869%
System Simulation - Optical

- **GLV**
 - Modeled as phase grating
 - Pulled down ribbons experience phase difference of:
 \[U_{DR} = U \exp(jkd \cdot 2) \]
 - Ribbons all up
 - Alternating curved ribbons all down
 - Only ~20 µm create square well diffraction pattern
Multi-Domain System-Level Simulation

- Circular detector placed on +1 mode
- Normalized power detection
System-Level Simulation: Digital Projection System

- Digital Projection System using Grating Light Valve
 - If pixel is “off”, light is reflected straight off GVL into the absorbing screen
 - If pixel is “on”, light is diffracted at an angle, propagating through the lens to the focal plane
Multi-Wavelength Simulation

- Alternating Ribbons are pulled down
- Pixel in “on” mode

Normalized Power Efficiency vs. Distance Between Lens and Detector Plane

Optical Efficiency (au)

Distance between Lens and Detector Plane (um)

Red • Green • Blue

Alternating Ribbons are pulled down
Pixel in “on” mode
Conclusions and Future Work

• Presented system-level simulations of GLV
• Fast behavioral models for electronics and mechanics using MNA
• Efficient and accurate optical simulation using angular spectrum technique
• Multi-domain, system-level analysis in single simulation framework
• Trade-off simulation accuracy for simulation speed
• Future Work:
 – Verification
 – Simulation of larger systems