
Predictive Control of Opto-Electronic Reconfigurable Interconnection Networks
Using Neural Networks

M.F. Sakr',2, S. P. Levitan2, C. L. Gile~ ' .~ , B. G. Horne', M. Maggini4, D. M. Chiarulli3

'NEC Research Institute, Princeton, NJ, 08540
sakr @research.nj .nec.com

*EE Department, University of Pittsburgh, Pittsburgh, PA, 15261
3CS Department, University of Pittsburgh, Pittsburgh, PA, 15260

4Universita di Firenze Dipartimento di Sistemi e Informatica Via di Santa Marta, 3, 50139 Firenze, Italy
5UMIACS, University of Maryland, College Park, MD 20742

Abstract

Opto-electronic reconfigurable interconnection networks
are limited by significant control latency when used in large
multiprocessor systems. This latency is the time required to
analyze the current trafJic and reconfigure the network to
establish the required paths. The goal of latency hiding is to
minimize the effect of this control overhead. In this papel;
we introduce a technique that pe6orms latency hiding by
learning the patterns of communication trafJic and using
that information to anticipate the need for communication
paths. Hence, the network provides the required communi-
cation paths before a request for a path is made. In this
study, the communication patterns (memory accesses) of a
parallel program are used as input to a time delay neural
network (TDNN) to pe6orm on-line training and predic-
tion. These predicted communication patterns are used by
the interconnection network controller that provides routes
for the memory requests. Based on our experiments, the
neural network was able to learn highly repetitive commu-
nication patterns, and was thus able to predict the alloca-
tion of communication paths, resulting in a reduction of
communication latency.

1 Introduction
Communication latency is a significant issue in the

design of large scale multiprocessor systems. Point-to-point
interconnection networks, which directly connect all pro-
cessors and/or memories, provide minimum communica-
tion latency but suffer from high cost and limited
scalability. A plethora of electronic single-stage and multi-
stage networks have been proposed, designed and built [14,
121. An alternative is the use of opto-electronic reconfig-
urable interconnection networks which offer a limited num-
ber of high bandwidth communication channels configured
on demand, to satisfy the required communication traffic
[4]. A network controller determines the network configu-

ration based on processor requests. Once the controller pro-
vides the optical communication paths requested, the
communication proceeds at high speeds. Hence, the end-to-
end latency incurred by such networks can be characterized
by three components: control time, which is the time
needed to determine the new network configuration and to
physically establish the paths; launch time, the time to
transmit the data into the network; and$y time, the time
needed for the message to travel through the network to its
final destination. For high bandwidth short distance net-
works, the control time dominates the overall latency.
Therefore, in order to benefit from using an optical network
with high speed channels, reducing control latency is essen-
tial.

While we strive to reduce communications latency in
general, and control latency in particular, it is also possible
to reduce the effects of communication latency with tech-
niques generally known as latency hiding. One technique is
the use of locality in the communication traffic to amortize
the cost of establishing a single communication path over a
large number of data transfers. An implementation of that
technique, called state sequence routing, is explained
below. However, that technique still incurs the latency of
establishing the initial communication paths for each group
of messages. Our goal is to employ predictive techniques to
hide the latency of establishing the initial communication
paths. These techniques learn the patterns of communica-
tion and use that information to predict the need for a com-
munication path in advance. Hence, the network provides
the required communication path before a request for a path
is made.

In this paper, we examine how neural networks perform
at predicting the allocation of communication paths for a
reconfigurable opto-electronic interconnection network in a
shared memory multiprocessor environment. We chose a
neural network as a prediction tool because it is well stud-
ied, well known, and easy to implement [7]. We perform

0-8186-7101-7/95 $4.00 0 1995 IEEE
326

http://nec.com

on-line neural network learning and prediction for the com-
munication patterns of three parallel applications: tempera-
ture propagation, matrix multiply, and 1-D FFT. The next
section presents the environment of our experiment, we
describe our shared memory multiprocessor model and the
use of neural networks as predictors. In section 3, we dis-
cuss the organization of our experiments: extraction of
communication patterns, neural network learning and pre-
diction, and evaluation. Finally, we discuss our results and
make projections about future directions of research.

2 TheModels

2.1 State Sequence Routing in a Shared Memory
Multiprocessor

In our model, a shared memory multiprocessor consists
of a set of N processing elements, K memory modules and
a reconfigurable opto-electronic interconnection network.
Such networks offer fast high bandwidth optical channels
and can be configured so that any path between two compo-
nents is achievable. However, only a subset of the possible
paths can be implemented at any one time. Thus, a network
router controller is required to reconfigure the network on
demand through a set of configurations which provide the
communication paths needed to satisfy the current traffic.
When a communication path to a memory is needed by a
processor and that path does not exist in the current set of
configurations, the processor issues a communication fault
and makes a request to the network controller. The network
controller receives requests from all faulting processors and
proceeds to reconfigure the network to service the current
outstanding requests. This control system is based on the
paradigm of state sequence routing [2,3].

Figure 1, depicts the general structure of a shared mem-
ory multiprocessor based on this paradigm. Sets of compat-
ible (non-blocking) paths are provided by the network in a
repetitive pattern, called a state sequence. The state
sequence control algorithm, which runs in the state trans-
former block, determines the sequence. The state generator
block is responsible for broadcasting the fixed length state
sequence to each of the processors and memory modules.
Thus, a processor waits for the network state which con-
tains its required path to a memory. When such a state is
detected, the processor transmits its memory request. On
the other hand, if an entire sequence goes by without such a
path, the processor generates a fault. In response to the
fault, the controller must add the required path, possibly by
removing an existing path.

Since the traffic set changes dynamically as the computa-
tion progresses, the controller’s task is to transform the
state sequence to track these changes in the traffic. The
essential point is that the control unit needs only to respond
to the changes in the traffic and establish the initial paths, it

-* Reconfigurable
Interconnection

Figure I . State sequence paradigm

is not required to respond to individual messages. Since
communication patterns in a multiprocessor environment
tend to exhibit locality characteristics [lo], the rate at
which changes occur in the traffic is lower than the mes-
sage generation rate. The state sequence router exploits this
locality inherent in the communication by re-using the
sequence of states, or paths, repetitively.

However, the state sequence routing technique still
incurs the: latency of establishing the initial communication
paths when responding to the changes in the traffic. This
overhead can be significant when the traffic exhibits low
degrees of locality such as when processes move from
phase to phase in a computation. Our goal is to hide the
latency of establishing these new communication paths by
predicting the changes in traffic and informing the control-
ler of a needed transformation, before the fault occurs.
Consequently, the controller will transform the state
sequence to include the soon-to-be-needed states thus
avoiding the latency incurred by the fault.

2.2 Neural Networks as Predictors
Previously, we deduced that the traffic to be predicted

changes dynamically as a function of the computation time
in the multiprocessor and could be modeled as a time
series. Thus, any learning method must be able to learn a
time-series and, after learning, perform as a predictor of
future system behavior. Neural networks have been shown
to be useful time-series predictors [17]. Many different
time-varying neural networks could be used. However, for
this early investigation we chose a simple input time-delay
neural network (TDNN) [111. This is a feed-forward neural
net with a temporal input window [8] .

In our multiprocessor environment, we want to train on
and predict the communication patterns between the pro-
cessors and the memory modules. The prediction is based

327

on the history of behavior of the communication. The
TDNN architecture with its input window possesses the
memory necessary to maintain the history of the communi-
cation needed for prediction. In general these networks are
trained with a supervised training procedure. A set of exam-
ple input/output pairs are presented to the TDNN and a cost
function of the error between the desired and actual output
is minimized using, in this case, a gradient-based training
algorithm [7] . Training is terminated when this error falls
below some acceptable preset value. For our application,
the training and prediction need to be performed on-line,
meaning that the neural net must be continually re-trained
as it is predicting the message traffic. This could be a prob-
lem for any neural network archtecture, not just the TDNN.
However, with the advent of faster and faster microproces-
sor chips, we expect that this will not be an issue in the near
future. For the work presented in this paper, we used a sim-
ulation of the multiprocessor behavior, so that computation
time for the neural network was not a factor.

3 Experimental Procedures
In this section, we describe our procedures for the three

experiments performed. For each experiment we perform
three steps. First, we use a trace driven shared memory mul-
tiprocessor simulator to generate “raw” memory traces of a
parallel program. We also translate the raw traces into a set
of communication patterns. Second, we use the patterns to
perform on-line training of the neural network. The ”N
both trains on, and predicts, the communication patterns.
Finally, we evaluate the predictions made by the neural net-
work by using the predictions while simulating the routing
of the actual messages using a simulated state sequence
router and keeping a log of the number of faults incurred.
The next three subsections describe in detail the steps taken
in each experiment.

3.1 Extraction of Communication Pattern
A trace driven shared memory multiprocessor (SMM)

simulator [l] is used to generate the raw memory traces
from the execution of a parallel program. The parallel pro-
grams use custom shared memory load and store functions.
Hence, each shared memory access (load or store) is recog-
nized by the SMM simulator which in turn writes to a file
the memory accesses made by the processors. For each
memory reference made, the following information is writ-
ten to the trace file: the type of memory operation, the rela-
tive time between accesses for each processor, the memory
address, and the value if executing a store operation. The
relative time spent between accesses for each processor is
measured by the SMM simulator using the UNIX “time”
function. The relative time between memory accesses for a
processor varies with the time that processor spends doing
computation.

Because we are performing trace driven simulation, we
make the assumption that the memory access time, or
latency, is fixed and independent of the data. In other
words, there is no penalty incurred for faults, the time to
access all memory is fixed. By employing trace driven sim-
ulation and making these assumptions, we lose some accu-
racy in the relative times of the references compared to the
communication patterns which would occur in a real sys-
tem. We accept these inaccuracies in this study, but note
that the complexity of the task for the neural network is the
same.

Each of the parallel programs used in these experiments
are specifically written to run on a shared memory multi-
processor with N = 8 processors and K=N=8 memory mod-
ules. The SMM simulator could run any K=N
configuration, but for this preliminary investigation we
maintained the same configuration for all experiments.

The raw traces generated by the simulator are stored in a
non-sequential format. In order to extract the temporal
communication pattern from these traces, it is necessary to
serialize the traces. To perform trace serialization, we use a
technique that employs N memory access queues, one per
processor, shown in Figure 2. Each queue contains all the
memory accesses made by that processor and the relative
time between memory accesses. Using the relative time
between accesses for each processor, the queues are
scanned to select the next memory reference. This process
combines the traces to a single time line which generates
sequential memory accesses. For each memory access, we
record the processor number, memory access time stamp,
and the memory module number being referenced.

Scan the

Figure 2. Raw memory trace serializer technique

The serialized memory traces are then partitioned into a
per processor communication pattern to simplify the obser-
vation of the communication behavior. The partitioning is
performed using a technique which transforms the sequence
of memory accesses to a matrix form. Using a time win-
dowing mechanism, as shown in Figure 3, we translate the
sequential memory references into a sequence of communi-
cation matrices. This technique samples the sequential

328

Serialized Memory
References

Communication Pattern
Time Line

Figure 3. Translation of the memory references
to the matrix communication pattern

memory traces and uses a fixed time window to map the
memory accesses that take place in that window’s time
period to a communication matrix. The columns of a com-
munication matrix correspond to the processors and the
rows correspond to the memory modules. Each entry in a
communication matrix describes the communication
between a processor-memory pair. The construction of the
matrices is binary, if any communication takes place
between a processor-memory pair during a fixed time win-
dow, the appropriate entry in the communication matrix is
set to one. All other matrix entries are set to zero. Because
the state sequence router maintains paths in the sequence
after they are used, multiple references in a single time win-
dow can be treated in the same way as a single reference.

Performing this time windowing, “compresses” the over-
all communication pattern. Therefore, the locality of refer-
ences in the data is reduced, which emphasizes the changes
in the communication patterns. Since our goal is to have the
neural network learn and predict the changes in communi-
cation patterns, increasing the number of changes relative
to the number of local accesses that the neural network
sees, is essential. This issue is discussed in more detail
below. Also, when increasing the width of the window we
can have the case of a processor communicating with sev-
eral memory modules in the same time window. We call
these overlapping accesses and they must be supported, by
providing multiple paths to the processor within a state
sequence, during simulation.

We further simplify the learning/prediction task by using
individual columns of the communication matrices as input
to individual neural networks. For an NxN configuration for
the multiprocessor architecture, the communication vectors
are of size N. An individual neural network will train on

and predict the sequence of communication vectors for each
processor instead of one large neural network which uses
the sequence of communication matrices. This means we
will need N individual neural networks. By using the com-
munication vectors instead of the matrices we make the
assumption that the communication behavior of the proces-
sors are independent. Relaxing this assumption is the basis
of future work to capture the cross processor communica-
tion behavior.

Therefore, the sequential, compressed, one dimensional
Nxl communication vectors of a single processor are used
to perform the on-line learning/prediction of that proces-
sor’s communication pattern. The next subsection describes
the details of the on-line learning and prediction performed
by the neural network.

3.2 Neural Network Training and Prediction
In the second step of the experiments, the extracted com-

munication patterns are used as training data for the on-line
neural network prediction algorithm. Figure 4 illustrates the
feed forward neural network with a tapped delay line that
was used for all experiments discussed in this paper. To per-
form “fast” on-line training, this architecture uses conven-
tional back propagation methods to learn the
communication pattern. Furthermore, the tapped delay line
maintains the history needed for learning and prediction.

h f

Input Neuro
with a tap
delay line
of size 5 t

Figure 4. Feed forward neural network with
tapped delay

The tapped delay line is a shift register of length 1 that
acts as a set of input neurons where each entry holds a time-
delayed value of the input. Hence, for m inputs the number
of input neurons is m x (1 + 1) . Therefore, as the number of
inputs to the neural network increase, the size of the neural
network increases vastly due to the tapped delay line. Since
large neural networks train slower than smaller neural net-
works, we try to keep the size of the neural network as
small as possible. Of course, in a real system, the neural
network would be implemented as special purpose hard-
ware which would simplify many of these issues [15].

329

In choosing the length of the tapped delay line we want
the smallest neural network that can capture the dynamics
of the system, Preliminary testing indicated that a tapped
delay line of length 5 suffices to give good performance but
keeps the size of the neural network small enough to per-
form on-line training for the applications examined in this
study. This means that for our system with eight destina-
tions, the number of input neurons is 48. The number of
output neurons is also 8 since we are trying to predict the
8x1 communication vectors. We chose a hidden layer of 10
neurons which preliminary testing indicated is large enough
for the problem at hand. A neural network simulator [13]
was used for training and prediction. The simulator uses the
following parameters to control how the training/prediction
is performed:

Prediction step. This parameter controls the prediction
horizon, it is used by the learning algorithm to set the
target vector for the outputs. For these experiments this
parameter is set to 1 (one step prediction).
Training set size. The number of input vectors that the
simulator trains on every training period, 1.
Retrain interval. The retrain interval parameter sets
the frequency of training periods, 1.
Learning rate. The learning rate controls the level of
change applied to the weights after each training
period. With a high learning rate the neural network
will react fast to abrupt changes which is not favorable.
Therefore, we set the learning rate to 0.01 so that the
overall pattern of communication will be learned.
Maximum number of epochs. The number of times a
data set is trained on is the number of epochs of train-
ing. Training termination is determined by setting a
maximum number of epochs or if the neural network’s
output error is less than some preset threshold. To sim-
ulate real-time training, we set the epoch number to 1.

While training, the back propagated error is calculated
for an input of a communication vector at time step t, by
comparing the neural network output (predicted) to the
actual input communication vector at time t+l. At every
time step the neural network’s predicted communication
vectors are written to a file. These predicted vectors are
then evaluated to examine the neural network predction
performance.

3.3 Prediction Evaluation
After performing some initial training and prediction

simulation experiments, we observed the following. The
neural network is good at predicting the changes in the
communication patterns, however, it is not very accurate
about exactly when those changes will take place. We
believe that this phenomena is caused by the relatively
small amount of history kept in the tapped delay line, and

the locality in the message traffic. However, this is not a
problem, since the state sequence routing mechanism can
store the early predictions made by the neural network until
their actual use. The state sequence router can take advan-
tage of early predictions because it keeps a predicted state
in its sequence until it needs to be replaced by a newly
needed state [2] .

In order to evaluate the prediction performance for our
system, we use the neural network prediction to inform the
router’s controller to add the predicted communication
paths to the state sequence. A fault occurs when a path is
needed by the actual communication but not found in the
router’s sequence. The faults that occur while performing
the routing are recorded and written to a file. Finally, the
number of faults per unit time are plotted, using a time
average with a large window, to show the average behavior
of the system over time.

4 Results
In this section we discuss the results of the three experi-

ments performed [16]. We used as input the communication
patterns of following three applications. The first applica-
tion is a temperature propagation program (2D relaxation
algorithm); the second is a repetitive matrix multiply pro-
gram; and the third is a repetitive 1D FFT program.

4.1 Temperature Propagation Application (2D
relaxation algorithm)

Our first application is a simple, highly parallel program
with a high degree of locality. The program is a temperature
propagationhelaxation algorithm. The setup for this pro-
gram is a grid of points where the temperature at each point
is computed as the averaged sum of the neighboring four
points. Starting with a grid of 32x32 points, initially having
a temperature of zero, the temperatures of the top and right
sides of the grid are set to a 100. The temperature propa-
gates through the grid until it relaxes and the changes in
temperature are below a threshold at all points. As a conse-

the temperature computation
is partitioned vertically

0

Temperature = 100
PO P1

grid point storage jm ..

...................................... is partitioned
horizontally . .

......................................
M ...

0

Temperature = 0

Figure 5. 32x32 grid temperature propagation
program, parallelized for an 8x8 multiprocessor

330

quence, the program loops repetitively until the threshold is
met at all points, which generates an overall repetitive com-
munication pattern. This parallel program was written for
the 8x8 SMM simulator discussed earlier. The grid is parti-
tioned horizontally into eight sections, each stored in a sep-
arate memory module. Also, the grid is partitioned
vertically into eight sections and the temperature update for
the grid points in each section is computed on a separate
processor. The parallelization of the program is depicted in
Figure 5.

Based on the previous discussion, a time window of
length 5000 is used to generate the communication matrices
which emphasize the changes in the communication pat-
tern. Using these matrices we extract the 8x1 communica-

8

7

6

r r 5

<
m -
E 4

t
= 3

2

1

Or3 50 100 150 200 250 3.30 350 400
Tim0

Figure 7. Overall communication pattern of the
temperature propagation program

tion vector of processor PO and all memory modules. The
overall communication pattern for this specific vector is
illustrated in Figure 7. Figure 6 shows the pattern that is
repeated in this application. For this simple application, the
state sequence simulator used a sequence length of 2.

The number of faults recorded by the simulation are
impulses occurring over time. Here, we time average the
impulses and plot this average vs. time. Figure 8 shows a
plot of the number of faults vs. time occurring with and
without the use of neural network prediction. Note that the
initial rising slope for faults, in both plots, is an artifact of
the large time window used for averaging.

In this example, the communication pattern is a stair like
pattern (Figure 6), where each step depicts a new locality
pattern. To be effective, the neural network has to predict
the changes to these new locality patterns. This is because,
during each "stair step", the state sequence router itself sat-
isfies all the routing needed and any prediction at that time
is redundant. As Figure 8 illustrates, the neural network
prediction greatly reduces the number of faults incurred
during the routing of the actual communication. Hence, the
neural network is predicting the changes in the communica-
tion pattern.

0 7 7 ' r I I
without neural net prediction

06 -
~~,.(..,*-\'u"\.nA

%,# WWk'W,..*F~.,
, l + - 0 5 -

m
0 ' 0.3

0.2
-

0 50 100 150 200 250 3W 350 4(
Time

Figure 8. Number of faults incurred with and
without neural network prediction

4.2 Matrix Multiply
As a second application we chose a parallel matrix multi-

ply program. This program also exhibits high locality, but
the communication patterns extracted are more complex
than those shown for the temperature propagation program.
By complex we mean that the processor alternates its
accesses to the memory modules in a less uniform fashion
compared to the temperature propagation program. The
purpose of using this program was to investigate how well
the neural network learns and predicts complex repetitive

331

8x16

!
[128 entries ~ 128 entries

16x16
r

L

256 entries i 1
This vector is partitioned into 8 memory modules

Figure 9. Matrix multiply program

communication patterns.
The multiplication is performed on two matrices, the first

is of size 16x8 and the second is 8x16 to result in a 16x16
matrix. Initially, the matrices are vectorized and concate-
nated into a single vector. This vector is partitioned and
stored into 8 memory modules. Similarly, the computation
is partitioned to the 8 processors. This procedure is depicted
in Figure 9.

Using a window size of 5000, the communication pattern
of a single processor (PO) and all memory modules (MO-
M7) is plotted vs. time for a single matrix multiply in Fig-
ure 10. We can see that Processor PO communicates for
long periods of time with each of the memory modules.
This demonstrates the high spatial and temporal locality
inherent in the program. However, there is not much repeti-
tiveness. Therefore, we repeated the matrix multiply,
assuming an outer loop, to generate a repetitive pattern of
memory accesses as shown in Figure 11. The communica-
tion pattern also exhibits a lot of overlapping, since we used

1

0
0 5 10 15 20 25 30 35 40 45

l ime

Figure 10. Communication pattern of a single
matrix multiply (PO accessing MO-M7)

0 50 100 150 2Kl 250 300 350 400 450 5M
Time

Figure 11. Overall communication pattern of the
matrix multiply program

a large window size to compress the pattern. The overlap-
ping led us to use a state sequence length of 7 to support the
required memory traffic. The plot of the time averaged
number of faults vs. time, Figure 12, shows that the neural
network is learning and predicting these more complex pat-
terns.

e
m
0

0 50 100 150 2W 250 300 350 4W 450 500
Tim0

Figure 12. Number of faults incurred with and
without neural network prediction

4.3 Fast Fourier Tkansform
In our third experiment we used the communication pat-

tern generated from a parallel fast fourier transform (FFT)
program. The FFT is a widely used program that is easily
parallelizable [5,9]. To perform good learning and predic-
tion, the neural network needs a repetitive pattern and a sin-
gle 1D FFT does not show much repetitiveness, as shown in

332

Figure 13. Fast Fourier Transform (FFT)
parallelized to 8 processors and 8 memory
modules

Figure 14. Therefore, we decided to emulate the first half of
a 2D FFT by repetitively performing the ID FFT on an
input signal with 16 sample elements. If we can show that
the NN can learn and predict this pattern, then it will learn
and predict the pattern of the second half of the 2D FFT.

The parallel FFT algorithm we implemented computes
the FFT of a signal A with L = 16 samples. Therefore, logz
L = 4 steps of U2 = 8 butterfly operations are needed, at
each step we perform each butterfly operation on a separate
processor using U2 processors, as shown in Figure 13.
Hence, each processor will perform the butterfly operation
on the elements whose indices differ in the (4 - s)-th bit
position, s = [3, 2, 1, 01. The two resulting values of
the butterfly, performed by processor Px, are stored at indi-
ces 2~ and 2~ + 1 respectively. The data is partitioned
and mapped to the memory modules such that each memory
module will hold two consecutive values of all the input,
temporary, and output vectors needed. For example, in step
one, processor P5 performs the first butterfly on A[3] and
A[1 I] which were stored in memory module MI and mem-
ory module M5 respectively. Both values resulting from the
butterfly operation are stored in the temporary vector
TI [101 and TI [111 in M5 in preparation for the next butter-
fly step. The memory access pattern of P5, while perform-
ing a single FFT, is shown in Figure 14. The FFT shows a
high degree of locality to a single memory module, M5, and
a low degree of locality in its other accesses, M1, M4, and
M7. This is due to the fact that P5 writes all its butterfly

results to M5 and reads its input data from M1, M4, M5,
and M7. Hence, the memory accesses are sparse and differ-
ent, compared to the communication patterns of the other
two applications discussed earlier. The communication pat-
terns of the other processors are very similar to the one
shown.

Using a repetitive 1D FFT program we emulate a part of
a 2D FFT program and generate the repetitive patterns
shown in Figure 15. For this example, we used a window of
size 1000 time units and a sequence length of 3. The num-

0 20 40 60 80 100 120 140 160
lime

Figure 15. Memory accesses of P5 for the FFT
program
ber of communication faults that occur during the routing is
time averaged and plotted vs. time in Figure 16. In this
example, as well, the neural network is learning and pre-
dicting the communication pattern of the FFT since the
number of faults decrease with time.

333

U 45

0 4
,.-< I ; withsut neurh net prediction1

035 - j . -I
,-,

03 -

2 025 -
m
I - using neural net predictioi
* 02 -

0 20 40 60 80 100 120 140 160
Time

Figure 16. Number of faults incurred with and
without neural network prediction

5 Conclusion
In a large scale multiprocessor environment, a com-

pletely connected interconnection network is not feasible
due to cost and scalability issues. Hence, we turn to less
expensive, reconfigurable, solutions that scale well but
require more complex control. Using an optical reconfig-
urable interconnection network along with the state
sequence paradigm, we can increase control efficiency and
reduce latency based on the degree of locality in memory
traffic. Nevertheless, this solution incurs penalties since the
network controller still has to perform reconfiguration of
the network for changes in the traffic. In this paper we have
shown that by adding predictive techniques along with the
state sequence paradigm, this overhead is reduced due to
the quality and correctness of the predictions.

For predictive techniques, we trained a time-delay neural
network to learn and predict repetitive communication pat-
terns for three applications, temperature propagation,
matrix multiply and fast fourier transform. We make the
assumption that other parallel applications have similar
repetitive behaviors. The raw memory traces were trans-
lated to communication matrices using a windowing system
which hides some of the locality and emphasizes the
changes to a locality pattern. For the neural network to be
successful in learning the changes in the traffic, we have
found that we must emphasize the changes in the traffic that
the neural network sees. For these three applications the
neural network was able to learn and predict the change to a
new locality pattern. The windowing process facilitates the
learning of the communication pattern, but the predictions
are made at a granularity of the window size. The state
sequence router takes advantage of and uses the neural net-
work predictions to do anticipatory reconfiguration of the

optical network and thereby satisfy forthcoming communi-
cation requirements. Even if the predictions are made many
time steps in the future, the state sequence router has the
ability to store early predictions until their actual use. Thus,
the prediction performed by the neural network provided a
reduction in communication latency for applications tested.

6 Future Work
Our plan is to investigate the use of a single neural net-

work and attempt to learn the communication pattern using
the full communication matrices instead of the vectors.
Thus, we do not want to ignore the inter-processor depen-
dencies of the communication. In addition, we would like to
have a continuous simulation environment, i.e. program
driven simulation instead of trace driven simulation. In a
program driven simulation environment, the simulator will
not ignore the fact that faults will incur more time to access
memory as we do here. This will produce communication
patterns which represent the real communication in a multi-
processor accurately. Also, we would like to test the perfor-
mance of other neural network and machine learning
architectures for this type of time series prediction. Recur-
rent networks are particularly attractive given the powerful
real-time training algorithms, such as the extended Kalman
estimators, available for training. Another interesting and
open question is whether unsupervised training methods
can be effectively used to aid in the communication pattern
preprocessing for a supervised training method or for pre-
dicting communication latency [6]. Finally, we would like
to investigate the applicability of time series prediction
techniques to the general problem of latency hiding at all
levels of the memory hierarchy.

Acknowledgments
The authors would like to thank Rami G. Melhem for his

helpful discussions during the early work for this paper. S.
P. Levitan and D. M. Chiarulli would also like to acknowl-
edge support from AFOSR Grant F-49620-93-1-0023 for
work done at the University of Pittsburgh.

References
[11

[2]

M. Bigrigg, “Personal Communication”.

D. M. Chiarulli, S. P. Levitan, R. G. Melhem, C. Qiao,
“Locality based control algorithms for reconfigurable
interconnection networks,” Applied Optics, vol. 33,
pp. 1528-1537, March 1994.

[3] D. M. Chiarulli, S. P. Levitan, R. G. Melhem, C . Qiao,
“Bandwidth as a virtual resource in reconfigurable
optical interconnections,” Optical Computing Digest,
vol. 7, pp. 229-302, 1993.

334

D. M. Chiarulli, S. P. Levitan, R. G. Melhem, J. P.
Teza, G. Gravenstreter, “Multiprocessor
interconnection networks using partitioned optical
passive stars (POPS) topologies and distributed
control,” Proceedings of the First Intemational
Workshop on Massively Parallel Processing Using
Optical Interconnections, pp 70-80, April 1994.

T. H. Cormen, C . E. Leiserson, and R. L. Rivest,
“Introduction To Algorithms,” The MIT Press and
McGraw-Hill, 1991.

M. W. Goudreau, C. L. Giles, “Routing in Random
Multistage Interconnection Networks,” Neural
Networks in Telecommunications, Edited by Ben
Yuhas and Nirwan Ansari, Kluwer Academic
Publishers, 1994.

S. Haykin, “Neural Networks: A Comprehensive
Foundation,” MacMillian, 1994.

D. R. Hush, B. G. Horne, “Progress in supervised
neural networks,” IEEE Signal Processing Magazine,
vol. 10, pp. 8-39, 1993.

K. Hwang, F. A. Briggs, “Computer Architecture and
Parallel Processing,” McGraw-Hill, 1984.

111 K. J. Lang, A. H. Waibel, G. E. Hinton, “A time-delay
neural network architecture for isolated word
recognition,” Neural Networks, vol. 3, pp. 23-44,
1990.

121 E T. Leighton, “Introduction to parallel Algorithms
and Architectures,” Morgan Kaufmann, San Mateo,
CA, 1993.

[131 Marco Maggini, “Personal Communication”.

[14] H. J. Siegel, “Interconnection Networks for Large-
Scale Parallel Processing Theory and Case Studies,
Second Edition,” McGraw-Hill, 1990.

[15] Bing J. Sheu, “Neural Information Processing and
VLSI”, Kluwer, 1995.

[161 M. E Sakr, “Predicting Multiprocessor Communica-
tion Patterns with Neural Networks,” M. S. Thesis,
Department of Electrical Engineering, University of
Pittsburgh, PA, 15261, 1995.

[17] A. S . Weigend and N. A. Gershenfeld, ”Time Series
Prediction: Forecasting the Future and Understanding
the Past”, Addison-Wesley, 1993.

[lo] K. L. Johnson, “The impact of communication
locality on large-scale multiprocessor performance”,
Computer Architecture News, vol. 20, pp 392-402,
1992.

335

