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Abstract 

Opto-electronic reconfigurable interconnection networks 
are limited by significant control latency when used in large 
multiprocessor systems. This latency is the time required to 
analyze the current trafJic and reconfigure the network to 
establish the required paths. The goal of latency hiding is to 
minimize the effect of this control overhead. In this papel; 
we introduce a technique that pe6orms latency hiding by 
learning the patterns of communication trafJic and using 
that information to anticipate the need for communication 
paths. Hence, the network provides the required communi- 
cation paths before a request for a path is made. In this 
study, the communication patterns (memory accesses) of a 
parallel program are used as input to a time delay neural 
network (TDNN) to pe6orm on-line training and predic- 
tion. These predicted communication patterns are used by 
the interconnection network controller that provides routes 
for the memory requests. Based on our experiments, the 
neural network was able to learn highly repetitive commu- 
nication patterns, and was thus able to predict the alloca- 
tion of communication paths, resulting in a reduction of 
communication latency. 

1 Introduction 
Communication latency is a significant issue in the 

design of large scale multiprocessor systems. Point-to-point 
interconnection networks, which directly connect all pro- 
cessors and/or memories, provide minimum communica- 
tion latency but suffer from high cost and limited 
scalability. A plethora of electronic single-stage and multi- 
stage networks have been proposed, designed and built [ 14, 
121. An alternative is the use of opto-electronic reconfig- 
urable interconnection networks which offer a limited num- 
ber of high bandwidth communication channels configured 
on demand, to satisfy the required communication traffic 
[4]. A network controller determines the network configu- 

ration based on processor requests. Once the controller pro- 
vides the optical communication paths requested, the 
communication proceeds at high speeds. Hence, the end-to- 
end latency incurred by such networks can be characterized 
by three components: control time, which is the time 
needed to determine the new network configuration and to 
physically establish the paths; launch time, the time to 
transmit the data into the network; and$y time, the time 
needed for the message to travel through the network to its 
final destination. For high bandwidth short distance net- 
works, the control time dominates the overall latency. 
Therefore, in order to benefit from using an optical network 
with high speed channels, reducing control latency is essen- 
tial. 

While we strive to reduce communications latency in 
general, and control latency in particular, it is also possible 
to reduce the effects of communication latency with tech- 
niques generally known as latency hiding. One technique is 
the use of locality in the communication traffic to amortize 
the cost of establishing a single communication path over a 
large number of data transfers. An implementation of that 
technique, called state sequence routing, is explained 
below. However, that technique still incurs the latency of 
establishing the initial communication paths for each group 
of messages. Our goal is to employ predictive techniques to 
hide the latency of establishing the initial communication 
paths. These techniques learn the patterns of communica- 
tion and use that information to predict the need for a com- 
munication path in advance. Hence, the network provides 
the required communication path before a request for a path 
is made. 

In this paper, we examine how neural networks perform 
at predicting the allocation of communication paths for a 
reconfigurable opto-electronic interconnection network in a 
shared memory multiprocessor environment. We chose a 
neural network as a prediction tool because it is well stud- 
ied, well known, and easy to implement [7]. We perform 
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on-line neural network learning and prediction for the com- 
munication patterns of three parallel applications: tempera- 
ture propagation, matrix multiply, and 1-D FFT. The next 
section presents the environment of our experiment, we 
describe our shared memory multiprocessor model and the 
use of neural networks as predictors. In section 3, we dis- 
cuss the organization of our experiments: extraction of 
communication patterns, neural network learning and pre- 
diction, and evaluation. Finally, we discuss our results and 
make projections about future directions of research. 

2 TheModels 

2.1 State Sequence Routing in a Shared Memory 
Multiprocessor 

In our model, a shared memory multiprocessor consists 
of a set of N processing elements, K memory modules and 
a reconfigurable opto-electronic interconnection network. 
Such networks offer fast high bandwidth optical channels 
and can be configured so that any path between two compo- 
nents is achievable. However, only a subset of the possible 
paths can be implemented at any one time. Thus, a network 
router controller is required to reconfigure the network on 
demand through a set of configurations which provide the 
communication paths needed to satisfy the current traffic. 
When a communication path to a memory is needed by a 
processor and that path does not exist in the current set of 
configurations, the processor issues a communication fault 
and makes a request to the network controller. The network 
controller receives requests from all faulting processors and 
proceeds to reconfigure the network to service the current 
outstanding requests. This control system is based on the 
paradigm of state sequence routing [2,3]. 

Figure 1, depicts the general structure of a shared mem- 
ory multiprocessor based on this paradigm. Sets of compat- 
ible (non-blocking) paths are provided by the network in a 
repetitive pattern, called a state sequence. The state 
sequence control algorithm, which runs in the state trans- 
former block, determines the sequence. The state generator 
block is responsible for broadcasting the fixed length state 
sequence to each of the processors and memory modules. 
Thus, a processor waits for the network state which con- 
tains its required path to a memory. When such a state is 
detected, the processor transmits its memory request. On 
the other hand, if an entire sequence goes by without such a 
path, the processor generates a fault. In response to the 
fault, the controller must add the required path, possibly by 
removing an existing path. 

Since the traffic set changes dynamically as the computa- 
tion progresses, the controller’s task is to transform the 
state sequence to track these changes in the traffic. The 
essential point is that the control unit needs only to respond 
to the changes in the traffic and establish the initial paths, it 
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Figure I .  State sequence paradigm 

is not required to respond to individual messages. Since 
communication patterns in a multiprocessor environment 
tend to exhibit locality characteristics [lo], the rate at 
which changes occur in the traffic is lower than the mes- 
sage generation rate. The state sequence router exploits this 
locality inherent in the communication by re-using the 
sequence of states, or paths, repetitively. 

However, the state sequence routing technique still 
incurs the: latency of establishing the initial communication 
paths when responding to the changes in the traffic. This 
overhead can be significant when the traffic exhibits low 
degrees of locality such as when processes move from 
phase to phase in a computation. Our goal is to hide the 
latency of establishing these new communication paths by 
predicting the changes in traffic and informing the control- 
ler of a needed transformation, before the fault occurs. 
Consequently, the controller will transform the state 
sequence to include the soon-to-be-needed states thus 
avoiding the latency incurred by the fault. 

2.2 Neural Networks as Predictors 
Previously, we deduced that the traffic to be predicted 

changes dynamically as a function of the computation time 
in the multiprocessor and could be modeled as a time 
series. Thus, any learning method must be able to learn a 
time-series and, after learning, perform as a predictor of 
future system behavior. Neural networks have been shown 
to be useful time-series predictors [17]. Many different 
time-varying neural networks could be used. However, for 
this early investigation we chose a simple input time-delay 
neural network (TDNN) [ 111. This is a feed-forward neural 
net with a temporal input window [ 8 ] .  

In our multiprocessor environment, we want to train on 
and predict the communication patterns between the pro- 
cessors and the memory modules. The prediction is based 
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on the history of behavior of the communication. The 
TDNN architecture with its input window possesses the 
memory necessary to maintain the history of the communi- 
cation needed for prediction. In general these networks are 
trained with a supervised training procedure. A set of exam- 
ple input/output pairs are presented to the TDNN and a cost 
function of the error between the desired and actual output 
is minimized using, in this case, a gradient-based training 
algorithm [7] .  Training is terminated when this error falls 
below some acceptable preset value. For our application, 
the training and prediction need to be performed on-line, 
meaning that the neural net must be continually re-trained 
as it is predicting the message traffic. This could be a prob- 
lem for any neural network archtecture, not just the TDNN. 
However, with the advent of faster and faster microproces- 
sor chips, we expect that this will not be an issue in the near 
future. For the work presented in this paper, we used a sim- 
ulation of the multiprocessor behavior, so that computation 
time for the neural network was not a factor. 

3 Experimental Procedures 
In this section, we describe our procedures for the three 

experiments performed. For each experiment we perform 
three steps. First, we use a trace driven shared memory mul- 
tiprocessor simulator to generate “raw” memory traces of a 
parallel program. We also translate the raw traces into a set 
of communication patterns. Second, we use the patterns to 
perform on-line training of the neural network. The ”N 
both trains on, and predicts, the communication patterns. 
Finally, we evaluate the predictions made by the neural net- 
work by using the predictions while simulating the routing 
of the actual messages using a simulated state sequence 
router and keeping a log of the number of faults incurred. 
The next three subsections describe in detail the steps taken 
in each experiment. 

3.1 Extraction of Communication Pattern 
A trace driven shared memory multiprocessor (SMM) 

simulator [l] is used to generate the raw memory traces 
from the execution of a parallel program. The parallel pro- 
grams use custom shared memory load and store functions. 
Hence, each shared memory access (load or store) is recog- 
nized by the SMM simulator which in turn writes to a file 
the memory accesses made by the processors. For each 
memory reference made, the following information is writ- 
ten to the trace file: the type of memory operation, the rela- 
tive time between accesses for each processor, the memory 
address, and the value if executing a store operation. The 
relative time spent between accesses for each processor is 
measured by the SMM simulator using the UNIX “time” 
function. The relative time between memory accesses for a 
processor varies with the time that processor spends doing 
computation. 

Because we are performing trace driven simulation, we 
make the assumption that the memory access time, or 
latency, is fixed and independent of the data. In other 
words, there is no penalty incurred for faults, the time to 
access all memory is fixed. By employing trace driven sim- 
ulation and making these assumptions, we lose some accu- 
racy in the relative times of the references compared to the 
communication patterns which would occur in a real sys- 
tem. We accept these inaccuracies in this study, but note 
that the complexity of the task for the neural network is the 
same. 

Each of the parallel programs used in these experiments 
are specifically written to run on a shared memory multi- 
processor with N = 8  processors and K=N=8 memory mod- 
ules. The SMM simulator could run any K=N 
configuration, but for this preliminary investigation we 
maintained the same configuration for all experiments. 

The raw traces generated by the simulator are stored in a 
non-sequential format. In order to extract the temporal 
communication pattern from these traces, it is necessary to 
serialize the traces. To perform trace serialization, we use a 
technique that employs N memory access queues, one per 
processor, shown in Figure 2. Each queue contains all the 
memory accesses made by that processor and the relative 
time between memory accesses. Using the relative time 
between accesses for each processor, the queues are 
scanned to select the next memory reference. This process 
combines the traces to a single time line which generates 
sequential memory accesses. For each memory access, we 
record the processor number, memory access time stamp, 
and the memory module number being referenced. 

Scan the 

Figure 2. Raw memory trace serializer technique 

The serialized memory traces are then partitioned into a 
per processor communication pattern to simplify the obser- 
vation of the communication behavior. The partitioning is 
performed using a technique which transforms the sequence 
of memory accesses to a matrix form. Using a time win- 
dowing mechanism, as shown in Figure 3, we translate the 
sequential memory references into a sequence of communi- 
cation matrices. This technique samples the sequential 
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Figure 3. Translation of the memory references 
to the matrix communication pattern 

memory traces and uses a fixed time window to map the 
memory accesses that take place in that window’s time 
period to a communication matrix. The columns of a com- 
munication matrix correspond to the processors and the 
rows correspond to the memory modules. Each entry in a 
communication matrix describes the communication 
between a processor-memory pair. The construction of the 
matrices is binary, if any communication takes place 
between a processor-memory pair during a fixed time win- 
dow, the appropriate entry in the communication matrix is 
set to one. All other matrix entries are set to zero. Because 
the state sequence router maintains paths in the sequence 
after they are used, multiple references in a single time win- 
dow can be treated in the same way as a single reference. 

Performing this time windowing, “compresses” the over- 
all communication pattern. Therefore, the locality of refer- 
ences in the data is reduced, which emphasizes the changes 
in the communication patterns. Since our goal is to have the 
neural network learn and predict the changes in communi- 
cation patterns, increasing the number of changes relative 
to the number of local accesses that the neural network 
sees, is essential. This issue is discussed in more detail 
below. Also, when increasing the width of the window we 
can have the case of a processor communicating with sev- 
eral memory modules in the same time window. We call 
these overlapping accesses and they must be supported, by 
providing multiple paths to the processor within a state 
sequence, during simulation. 

We further simplify the learning/prediction task by using 
individual columns of the communication matrices as input 
to individual neural networks. For an NxN configuration for 
the multiprocessor architecture, the communication vectors 
are of size N. An individual neural network will train on 

and predict the sequence of communication vectors for each 
processor instead of one large neural network which uses 
the sequence of communication matrices. This means we 
will need N individual neural networks. By using the com- 
munication vectors instead of the matrices we make the 
assumption that the communication behavior of the proces- 
sors are independent. Relaxing this assumption is the basis 
of future work to capture the cross processor communica- 
tion behavior. 

Therefore, the sequential, compressed, one dimensional 
Nxl communication vectors of a single processor are used 
to perform the on-line learning/prediction of that proces- 
sor’s communication pattern. The next subsection describes 
the details of the on-line learning and prediction performed 
by the neural network. 

3.2 Neural Network Training and Prediction 
In the second step of the experiments, the extracted com- 

munication patterns are used as training data for the on-line 
neural network prediction algorithm. Figure 4 illustrates the 
feed forward neural network with a tapped delay line that 
was used for all experiments discussed in this paper. To per- 
form “fast” on-line training, this architecture uses conven- 
tional back propagation methods to learn the 
communication pattern. Furthermore, the tapped delay line 
maintains the history needed for learning and prediction. 

h f 

Input Neuro 
with a tap 
delay line 
of size 5 t 

Figure 4. Feed forward neural network with 
tapped delay 

The tapped delay line is a shift register of length 1 that 
acts as a set of input neurons where each entry holds a time- 
delayed value of the input. Hence, for m inputs the number 
of input neurons is m x (1 + 1) . Therefore, as the number of 
inputs to the neural network increase, the size of the neural 
network increases vastly due to the tapped delay line. Since 
large neural networks train slower than smaller neural net- 
works, we try to keep the size of the neural network as 
small as possible. Of course, in a real system, the neural 
network would be implemented as special purpose hard- 
ware which would simplify many of these issues [15]. 
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In choosing the length of the tapped delay line we want 
the smallest neural network that can capture the dynamics 
of the system, Preliminary testing indicated that a tapped 
delay line of length 5 suffices to give good performance but 
keeps the size of the neural network small enough to per- 
form on-line training for the applications examined in this 
study. This means that for our system with eight destina- 
tions, the number of input neurons is 48. The number of 
output neurons is also 8 since we are trying to predict the 
8x1 communication vectors. We chose a hidden layer of 10 
neurons which preliminary testing indicated is large enough 
for the problem at hand. A neural network simulator [13] 
was used for training and prediction. The simulator uses the 
following parameters to control how the training/prediction 
is performed: 

Prediction step. This parameter controls the prediction 
horizon, it is used by the learning algorithm to set the 
target vector for the outputs. For these experiments this 
parameter is set to 1 (one step prediction). 
Training set size. The number of input vectors that the 
simulator trains on every training period, 1. 
Retrain interval. The retrain interval parameter sets 
the frequency of training periods, 1. 
Learning rate. The learning rate controls the level of 
change applied to the weights after each training 
period. With a high learning rate the neural network 
will react fast to abrupt changes which is not favorable. 
Therefore, we set the learning rate to 0.01 so that the 
overall pattern of communication will be learned. 
Maximum number of epochs. The number of times a 
data set is trained on is the number of epochs of train- 
ing. Training termination is determined by setting a 
maximum number of epochs or if the neural network’s 
output error is less than some preset threshold. To sim- 
ulate real-time training, we set the epoch number to 1. 

While training, the back propagated error is calculated 
for an input of a communication vector at time step t, by 
comparing the neural network output (predicted) to the 
actual input communication vector at time t+l. At every 
time step the neural network’s predicted communication 
vectors are written to a file. These predicted vectors are 
then evaluated to examine the neural network predction 
performance. 

3.3 Prediction Evaluation 
After performing some initial training and prediction 

simulation experiments, we observed the following. The 
neural network is good at predicting the changes in the 
communication patterns, however, it is not very accurate 
about exactly when those changes will take place. We 
believe that this phenomena is caused by the relatively 
small amount of history kept in the tapped delay line, and 

the locality in the message traffic. However, this is not a 
problem, since the state sequence routing mechanism can 
store the early predictions made by the neural network until 
their actual use. The state sequence router can take advan- 
tage of early predictions because it keeps a predicted state 
in its sequence until it needs to be replaced by a newly 
needed state [ 2 ] .  

In order to evaluate the prediction performance for our 
system, we use the neural network prediction to inform the 
router’s controller to add the predicted communication 
paths to the state sequence. A fault occurs when a path is 
needed by the actual communication but not found in the 
router’s sequence. The faults that occur while performing 
the routing are recorded and written to a file. Finally, the 
number of faults per unit time are plotted, using a time 
average with a large window, to show the average behavior 
of the system over time. 

4 Results 
In this section we discuss the results of the three experi- 

ments performed [16]. We used as input the communication 
patterns of following three applications. The first applica- 
tion is a temperature propagation program (2D relaxation 
algorithm); the second is a repetitive matrix multiply pro- 
gram; and the third is a repetitive 1D FFT program. 

4.1 Temperature Propagation Application (2D 
relaxation algorithm) 

Our first application is a simple, highly parallel program 
with a high degree of locality. The program is a temperature 
propagationhelaxation algorithm. The setup for this pro- 
gram is a grid of points where the temperature at each point 
is computed as the averaged sum of the neighboring four 
points. Starting with a grid of 32x32 points, initially having 
a temperature of zero, the temperatures of the top and right 
sides of the grid are set to a 100. The temperature propa- 
gates through the grid until it relaxes and the changes in 
temperature are below a threshold at all points. As a conse- 

the temperature computation 
is partitioned vertically 

0 

Temperature = 100 
PO P1 

grid point storage jm ........................................ 

...................................... is partitioned 
horizontally . .  

...................................... 
M ... 

0 

Temperature = 0 

Figure 5. 32x32 grid temperature propagation 
program, parallelized for an 8x8 multiprocessor 
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quence, the program loops repetitively until the threshold is 
met at all points, which generates an overall repetitive com- 
munication pattern. This parallel program was written for 
the 8x8 SMM simulator discussed earlier. The grid is parti- 
tioned horizontally into eight sections, each stored in a sep- 
arate memory module. Also, the grid is partitioned 
vertically into eight sections and the temperature update for 
the grid points in each section is computed on a separate 
processor. The parallelization of the program is depicted in 
Figure 5. 

Based on the previous discussion, a time window of 
length 5000 is used to generate the communication matrices 
which emphasize the changes in the communication pat- 
tern. Using these matrices we extract the 8x1 communica- 

8 

7 

6 

r r 5  

< 
m - 
E 4  

t 
= 3  

2 

1 

Or3 50 100 150 200 250 3.30 350 400 
Tim0 

Figure 7. Overall communication pattern of the 
temperature propagation program 

tion vector of processor PO and all memory modules. The 
overall communication pattern for this specific vector is 
illustrated in Figure 7. Figure 6 shows the pattern that is 
repeated in this application. For this simple application, the 
state sequence simulator used a sequence length of 2. 

The number of faults recorded by the simulation are 
impulses occurring over time. Here, we time average the 
impulses and plot this average vs. time. Figure 8 shows a 
plot of the number of faults vs. time occurring with and 
without the use of neural network prediction. Note that the 
initial rising slope for faults, in both plots, is an artifact of 
the large time window used for averaging. 

In this example, the communication pattern is a stair like 
pattern (Figure 6),  where each step depicts a new locality 
pattern. To be effective, the neural network has to predict 
the changes to these new locality patterns. This is because, 
during each "stair step", the state sequence router itself sat- 
isfies all the routing needed and any prediction at that time 
is redundant. As Figure 8 illustrates, the neural network 
prediction greatly reduces the number of faults incurred 
during the routing of the actual communication. Hence, the 
neural network is predicting the changes in the communica- 
tion pattern. 

0 7 7  ' r I I 
without neural net prediction 

06 - 
~~,.(..,*-\'u"\.nA 

%,# WWk'W,..*F~., 
, l  + -  0 5  - 

m 
0 ' 0.3 

0.2 
- 

0 50 100 150 200 250 3W 350 4( 
Time 

Figure 8. Number of faults incurred with and 
without neural network prediction 

4.2 Matrix Multiply 
As a second application we chose a parallel matrix multi- 

ply program. This program also exhibits high locality, but 
the communication patterns extracted are more complex 
than those shown for the temperature propagation program. 
By complex we mean that the processor alternates its 
accesses to the memory modules in a less uniform fashion 
compared to the temperature propagation program. The 
purpose of using this program was to investigate how well 
the neural network learns and predicts complex repetitive 
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Figure 9. Matrix multiply program 

communication patterns. 
The multiplication is performed on two matrices, the first 

is of size 16x8 and the second is 8x16 to result in a 16x16 
matrix. Initially, the matrices are vectorized and concate- 
nated into a single vector. This vector is partitioned and 
stored into 8 memory modules. Similarly, the computation 
is partitioned to the 8 processors. This procedure is depicted 
in Figure 9. 

Using a window size of 5000, the communication pattern 
of a single processor (PO) and all memory modules (MO- 
M7) is plotted vs. time for a single matrix multiply in Fig- 
ure 10. We can see that Processor PO communicates for 
long periods of time with each of the memory modules. 
This demonstrates the high spatial and temporal locality 
inherent in the program. However, there is not much repeti- 
tiveness. Therefore, we repeated the matrix multiply, 
assuming an outer loop, to generate a repetitive pattern of 
memory accesses as shown in Figure 11. The communica- 
tion pattern also exhibits a lot of overlapping, since we used 

1 

0 
0 5 10 15 20 25 30 35 40 45 

l ime 

Figure 10. Communication pattern of a single 
matrix multiply (PO accessing MO-M7) 

0 50 100 150 2Kl 250 300 350 400 450 5M 
Time 

Figure 11. Overall communication pattern of the 
matrix multiply program 

a large window size to compress the pattern. The overlap- 
ping led us to use a state sequence length of 7 to support the 
required memory traffic. The plot of the time averaged 
number of faults vs. time, Figure 12, shows that the neural 
network is learning and predicting these more complex pat- 
terns. 

e 
m 
0 

0 50 100 150 2W 250 300 350 4W 450 500 
Tim0 

Figure 12. Number of faults incurred with and 
without neural network prediction 

4.3 Fast Fourier Tkansform 
In our third experiment we used the communication pat- 

tern generated from a parallel fast fourier transform (FFT) 
program. The FFT is a widely used program that is easily 
parallelizable [5,9]. To perform good learning and predic- 
tion, the neural network needs a repetitive pattern and a sin- 
gle 1D FFT does not show much repetitiveness, as shown in 
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Figure 13. Fast Fourier Transform (FFT) 
parallelized to 8 processors and 8 memory 
modules 

Figure 14. Therefore, we decided to emulate the first half of 
a 2D FFT by repetitively performing the ID FFT on an 
input signal with 16 sample elements. If we can show that 
the NN can learn and predict this pattern, then it will learn 
and predict the pattern of the second half of the 2D FFT. 

The parallel FFT algorithm we implemented computes 
the FFT of a signal A with L = 16 samples. Therefore, logz 
L = 4 steps of U2 = 8 butterfly operations are needed, at 
each step we perform each butterfly operation on a separate 
processor using U2 processors, as shown in Figure 13. 
Hence, each processor will perform the butterfly operation 
on the elements whose indices differ in the (4 - s)-th bit 
position, s = [ 3, 2, 1, 01. The two resulting values of 
the butterfly, performed by processor Px, are stored at indi- 
ces 2~ and 2~ + 1 respectively. The data is partitioned 
and mapped to the memory modules such that each memory 
module will hold two consecutive values of all the input, 
temporary, and output vectors needed. For example, in step 
one, processor P5 performs the first butterfly on A[3] and 
A[ 1 I] which were stored in memory module MI and mem- 
ory module M5 respectively. Both values resulting from the 
butterfly operation are stored in the temporary vector 
TI [ 101 and TI [ 111 in M5 in preparation for the next butter- 
fly step. The memory access pattern of P5, while perform- 
ing a single FFT, is shown in Figure 14. The FFT shows a 
high degree of locality to a single memory module, M5, and 
a low degree of locality in its other accesses, M1, M4, and 
M7. This is due to the fact that P5 writes all its butterfly 

results to M5 and reads its input data from M1, M4, M5, 
and M7. Hence, the memory accesses are sparse and differ- 
ent, compared to the communication patterns of the other 
two applications discussed earlier. The communication pat- 
terns of the other processors are very similar to the one 
shown. 

Using a repetitive 1D FFT program we emulate a part of 
a 2D FFT program and generate the repetitive patterns 
shown in Figure 15. For this example, we used a window of 
size 1000 time units and a sequence length of 3. The num- 

0 20 40 60 80 100 120 140 160 
lime 

Figure 15. Memory accesses of P5 for the FFT 
program 
ber of communication faults that occur during the routing is 
time averaged and plotted vs. time in Figure 16. In this 
example, as well, the neural network is learning and pre- 
dicting the communication pattern of the FFT since the 
number of faults decrease with time. 
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Figure 16. Number of faults incurred with and 
without neural network prediction 

5 Conclusion 
In a large scale multiprocessor environment, a com- 

pletely connected interconnection network is not feasible 
due to cost and scalability issues. Hence, we turn to less 
expensive, reconfigurable, solutions that scale well but 
require more complex control. Using an optical reconfig- 
urable interconnection network along with the state 
sequence paradigm, we can increase control efficiency and 
reduce latency based on the degree of locality in memory 
traffic. Nevertheless, this solution incurs penalties since the 
network controller still has to perform reconfiguration of 
the network for changes in the traffic. In this paper we have 
shown that by adding predictive techniques along with the 
state sequence paradigm, this overhead is reduced due to 
the quality and correctness of the predictions. 

For predictive techniques, we trained a time-delay neural 
network to learn and predict repetitive communication pat- 
terns for three applications, temperature propagation, 
matrix multiply and fast fourier transform. We make the 
assumption that other parallel applications have similar 
repetitive behaviors. The raw memory traces were trans- 
lated to communication matrices using a windowing system 
which hides some of the locality and emphasizes the 
changes to a locality pattern. For the neural network to be 
successful in learning the changes in the traffic, we have 
found that we must emphasize the changes in the traffic that 
the neural network sees. For these three applications the 
neural network was able to learn and predict the change to a 
new locality pattern. The windowing process facilitates the 
learning of the communication pattern, but the predictions 
are made at a granularity of the window size. The state 
sequence router takes advantage of and uses the neural net- 
work predictions to do anticipatory reconfiguration of the 

optical network and thereby satisfy forthcoming communi- 
cation requirements. Even if the predictions are made many 
time steps in the future, the state sequence router has the 
ability to store early predictions until their actual use. Thus, 
the prediction performed by the neural network provided a 
reduction in communication latency for applications tested. 

6 Future Work 
Our plan is to investigate the use of a single neural net- 

work and attempt to learn the communication pattern using 
the full communication matrices instead of the vectors. 
Thus, we do not want to ignore the inter-processor depen- 
dencies of the communication. In addition, we would like to 
have a continuous simulation environment, i.e. program 
driven simulation instead of trace driven simulation. In a 
program driven simulation environment, the simulator will 
not ignore the fact that faults will incur more time to access 
memory as we do here. This will produce communication 
patterns which represent the real communication in a multi- 
processor accurately. Also, we would like to test the perfor- 
mance of other neural network and machine learning 
architectures for this type of time series prediction. Recur- 
rent networks are particularly attractive given the powerful 
real-time training algorithms, such as the extended Kalman 
estimators, available for training. Another interesting and 
open question is whether unsupervised training methods 
can be effectively used to aid in the communication pattern 
preprocessing for a supervised training method or for pre- 
dicting communication latency [6]. Finally, we would like 
to investigate the applicability of time series prediction 
techniques to the general problem of latency hiding at all 
levels of the memory hierarchy. 
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