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SUMMARY & CONCLUSIONS 

In this research, we are developing a design 
framework for integrating dependability analysis into the 
distributed, heterogeneous, fault-tolerant real-time system 
design process. We focus on two dependability attributes: 
reliability and availability. We are implementing this 
framework on top of existing systems for the design of 
distributed, real-time systems such as TimeWiz (Ref. 4). This 
will allow system designers to evaluate system dependability, 
while other system evaluation concerns, such as system 
performance and design cost, are analyzed during every step 
in the system design process. Our system dependability 
analysis provides choices of system design based on the 
dependability results. In addition, we perform system 
dependability evaluation, or optimization, early in the system 
design process, without needing complete design information. 
In other words, with incomplete design information, we are 
able to predict the behavior of system dependability. This will 
significantly reduce the time and costs of real-time system 
design. 

1. INTRODUCTION 

Real-time computing technology has recently 
become one of the most demanding and challenging areas of 
research in computing. Distributed, heterogeneous, fault- 
tolerant real-time systems are required to handle complex real- 
time tasks in modem life such as flight control systems, 
industrial process control, the world-wide stock market 
exchange, and computer games. Therefore, the dependability 
of these systems must be analyzed. Dependability is a quality 
of service (QoS) having the attributes: reliability, availability, 
maintainability, testability, integrity, and safety. 

During the last fifteen years, a great number of tools 
and techniques for dependability analysis have emerged. 
These tools are based on well-known techniques, such as 
combinatorial analysis, static and dynamic fault-trees, 
stochastic Petri Nets (Refs. 1, 20), as well as Markov (Refs. 
14,25,29,30) and queuing models (Refs. 12-14,26). In order 
to handle more complex modern systems the models for these 
tools have been continuously enhanced. A representative set 

of these tools is ADAPT (Refs. 9, 23), SHARP (Ref. 31), 
RPM (Ref. 28), DEPEND (Ref. 17), DIFtree (Ref. 1 I), HARP 
(Ref. 2), MEADEP (Ref. 3 3 ,  SAVE (Refs. 15, 18), SMART 
(Ref. 6), SURE (Ref. 15), and UltraSAN (Ref. 32). 

Among these tools, the first three tools provide both 
performance and dependability evaluation. Among these three, 
ADAPT and SHARPE, provide only system (physical) level 
analysis, and RPM provides only a non-distributed (parallel) 
processing model. None of the tools offer composite 
performance modeling during synthesis (design and analysis) 
of distributed real-time operating systems and applications at 
all design levels. 

In addition, current dependability evaluation tools 
need significant effort to build a suitable dependability model 
to complement the existing performance model for each tool. 
For existing tools, errors in designing the dependability model 
can cause differences between predicted performance and real 
system performance. Further, during system dependability 
analysis, small modifications may require a remodeling of the 
entire system (Ref. 1). 

To solve this problem, a design framework that 
integrates dependability anzlysis into the system design 
process must be implemented. To date, there are very few 
such system design frameworks, and none of them support 
design for all design levels in the system design process, 
including evaluations of system redundancy, and dependency 
in the failure behavior of coriponents. Furthermore, they do 
not offer dependability analysis of systedapplication 
“snapshots”. This capability allows the system designer to 
observe the dependability behavior of any component in 
operation at any point in the design hierarchy (Ref. 2- 3). 

In our framework, we have developed a technique to 
capture the dependability properties of hardware and software 
components. We provide appropriate constantlnon-constant 
failure rate models (Refs. 5-7) for dependability analysis, 
evaluate functional dependencies, active (hot spares) and 
passive (cold spares) redundancies which commonly exist in 
any complex system. We also capture dependability analysis 
of application snapshots, essentially at the physical level of 
the system design process. This functionality allows the 
designer to observe the dependability behavior of any event in 
the system under design. 
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The rest of this paper is organized as follows. In the 
next section, we describe our system design framework. Then, 
we use an example applicatiodsystem to present our 
dependability analysis research model, both the system- 
modeling framework on which we base our work, and the 
dependability analysis framework, which spans multiple levels 
of the design process. Finally, in section 3, we present our 
plans for future work. 

2. THE SYSTEM DESIGN PROCESS FRAMEWORK 

Although our methodology for integrating 
dependability into the design process is general, the two 
system design frameworks upon which we are basing our 
work are the Systems Engineer Workbench (SEW2.0) (Refs. 
4-5,34) and the TimeWiz design assistant tools (Ref. 36). 

process. Then, the design process may repeat to meet the 
dependability and system performance requirements. Any 
change in the design process is automatically propagated from 
the higher levels down to the lower levels. 

2.1. An Example Application 
To illustrate the way dependability analysis can be 

integrated into the system design process, a simple example of 
an application is presented as it is designed, starting at the 
specification level (which includes the information of the 
domain level) down to the architecture, and the 
componentlphysical level. In this discussion, we focus mainly 
on the dependability analysis of the application, assuming that 
the application design process is taken care of by another 
group of application developers from which the inputs of the 
dependability analysis and evaluation are acquired. The 

dependability analysis and evaluation would 
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Figure 1: Dependability and System Design Process 

Without going into a detailed explanation (Refs. 5, 
37), in a generic design framework shown on the left hand 
side of Figure 1, the domain analysis classifies the 
performance requirements for both the software applications 
and the hardware platform. The specification design process 
creates a functional performance specification from the 
domain requirements. The architecture design process 
partitions the application into a set of components. The 
component/physical design process maps applications onto 
hardware components. The application componentlphysical 
design process takes care of the binding, routing, and 
scheduling of applications on hardware resources creating a 
set of links or connections between the two models (Refs. 5, 
34). We assume this generic model in the rest of this paper. 

As shown in Figure 1, in our integrated tool, for each 
level of system design process (from the domain level down to 
the physical level) there is a corresponding dependability 
model. Input parameters for each level of dependability 
analysis are taken from the system .design process of the 
application or the target-platform from the left-hand side of 
the figure. The dependability analysis evaluates each 
dependability level and reports back to each step of the design 

be carried out incrementally in parallel with 
the systedapplication design process. 

Our example 'is a simple speech 
recognition application running on a hardware 
platform as shown in Figure 2. The system is 
comprised of a computer system 
infrastructure, as shown in Figure 2(a), 
executing a set of real-time applications, 
including the speech recognition application. 
Note that the figure shows the potential 
hardware resources available for this 
application which are not all necessary. The 
speech recognition application, as shown in 
Figure 2(b), samples human speech, translates 
it into a set of commands that the computer 
can understand by performing analog to 
digital conversion of the speech signal, 
filtering or processing it, decoding the signal, 
and converting it to a text format. Since the 

speech application is CPU-intensive (Ref. 8). DSP (digital 
signal processing) and SGI (a high performance workstation 
such as a silicon graphics) servers are required to execute this 
algorithm in real-time. 

. U 
(a) Hardware Platform 

CPU- 1 DSP SGI CPU-2 

(b) Application: A Simple Speech Recognition Application 
Figure 2:Example Hardware Platform & Application (Ref.8) 
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We now discuss how we integrate dependability 
analysis into the software application, and the hardware 
platform models performing the modeling and analysis, level 
by level. The following subsections describe each 
levels. 

of the 

Domain Level 

Software Application Hardware Platform 
Specification Level 

Architecture Level 

Component Level 

Phvsical Level 

Figure 3: A Simplified Framework Model 

Figure 3 shows a simplified picture of our example 
application in the design framework. At the top level, all the 
dependability requirements are not yet decomposed. At the 
middle levels, extra abstraction levels can be added, as shown 
by the dashed lines. All the physical mappings and bindings 
are done last at the final stage, the physical level. 

Figure 4 shows the speech recognition application as 
it is represented in our system design process framework, level 
by level. The mapping, binding, and scheduling is performed 
and shown at the software application model. 

requirements of a set of applications which may (or may not) 
run concurrently on a specified hardware platform. This 
requirement definition is decomposed and propagated down to 
the next level in the hierarchy. For brevity, we do not show 
details at this level. 

2.1.2 Dependability Requirement Specification 
This model is a detailed structure document, also 

called a functional specification. The functional specification 
indicates what the systedapplications should do and how 
well they must work in terms of reliability and availability. 

At this level, all dependability requirements of the 
application are captured at both the software application and 
hardware platform models, as shown in Figure 4 and Table 1. 
In the figure and the table, the dependability requirements are 
mean time to falure, MZTF, (hours), time range of operation, t ,  
reliability, R(f) ,  and availability, A(?). The other properties 
shown are obtained from the lower levels of the framework. 

The dependability requirements of the application 
have constant values. However, the dependability offered 
from the lower levels in the hardware platform and application 
models can be captured either in a constant failure rate mode, 
or in a time-dependent failure rate mode using the Weibull 
distribution parameters. The Weibull distribution is selected to 
capture the dependability characteristics of a system/ 
component because it can model any stage in the "bathtub" 
curve (Ref. 12), which is the most common failure behavior of 
a component or system (Ref. 16). At this level, both of the 
hardware platform and application specification models, 
again, are decomposed and inherited in the next lower level. 

2.1.1 Domain Dependability Requirement Definition 
This level models the high level description of the 

domain dependability requirements from the user's or 
customer's point of view. These are the dependability 

Software Application Hardware Platform 

Figure 4: Example Design in the Framework 
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M’ITFLLevelOffered 
(Weibull) 
Time Range of 

from lower level 
M’ITFoffered T x R 0 
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Total hours. of W I  

Operationrt 0 ~ s )  . 

R(t) (scale 0-1) 
Reliability LLevel 
Offered (Const) 
Reliabilitv LLevel 

Reliability Requirement, 
operation, t 
R(t) C W I  

R(t)offeredfrom C x R 0 
the lower level 
R(t) offered from T x R 0 

parameter (T),Auto = Automatically generated, R/W 
Input/ Output for dependability analysis 

Reamrite ,  &d U 0  = 

Table 1: Dependability Property Description at the 
Specification Level 

Offered (Weibull) 
Availability 
Requirement (scale 0-1) 

2.1.3 Dependability of Architecture 
At this level, the dependability properties for both 

application software architecture and the hardware platform 
architecture are observed. As shown in Figure 4, the software 
application architecture consists of Audio A/D, Filter, Decode 
and Text Conversion, and the hardware platform architecture 
is made from CPU, DSP, SGI, and some Ethernet networks. 

the’lower level 
Act) W I  

Name 
Time Range of 

) RequirFment I higher level I I I I I I 

HGdware 
Platform 
Objectname A/H x R  
Total hours of A/H X W I  

N I I I 1  I I 

ility Offered I Default valueor I A/H I C l  x I W I I I 
Redundancy 
Reliability Offered 
with Redundancy 
LLevelReliabilitv 

greater thari 1 
Reliability A C x  R O  
offered 
Renortedfiom A/H C x R 0 

where AM = ApplicatiodHardware Platform, M = Mode which is either 
constant (C) or time-dependent parameter (T), Auto = Automatically 
generated, R N  = Read Write, and YO = Input/ Output for dependability 
analysis 

Table 2: Dependability Property Description at the 
Architecture Level 

The dependability requirement of each architecture 
unit in the hardware platform and application models are again 
captured in either of two modes, a constant failure rate, or a 
time-dependent failure rate using the Weibull failure 
parameters, which provide a rough idea of the lower bound 
(minimum) of the dependability characteristics of each 
architecture unit. The dependability properties of an 
architecture unit are described in detail in Table 2. 

From the table, the dependability attributes consist of 
requirements obtained from the higher levels, and 
dependability offered at the architecture level, which are the 
approximated failure rate and amount of redundancy of the 
units. The other attributes shown are automatically monitored 
and obtained from the lower levels. Note that the “amount of 
redundancy” attribute is shown only at the software 
application model, because binding and mapping of 
applications onto hardware resources is done at the software 
application model. 

Dependability analysis can take place at this level by 
comparing the dependability requirements of both the 
software and hardware to see if the requirements are matched, 
since the software is supported by the hardware resources. 
Also, the application-or hardware requirements must be lower 
than what the application or hardware platform architecture 
can offer, or else a more highly reliable architecture (or 
resource redundancy) must be used. 

2.1.4 Dependability of Component/ Physical Design 
At this level of the design process, the speech 

recognition architecture model is decomposed into the speech 
recognition componentlphysical model having 
componentlphysical dependability requirements as inputs to 
the dependability analysis of both the hardware platform and 
the speech recognition application dependability of 
componentlphysical models. AI1 the required types of 
hardware and software components for the speech recognition 
processing system are specified with known dependability 
properties and requirements. 

The software application components in the 
application model are supported by the hardware platform 
componentlphysical model. Thus the dependability properties 
of the allocated resources from the specified hardware 
platform components must meet the requirements of the 
application componentlphysical model. The dependability 
analysis is obtained at this component level both at the 
hardware platform and the application models to check if all 
the dependability requirements from the higher levels are still 
fullfilled under the assumption that each component meets the 
specified dependability requirements. 

The dependability attributes of each component in 
this level consist of requirements obtained from the higher 
level, dependability offered at this level which are the failure 
rate and activdpassive redundancy information. The other 
attributes shown are automatically obtained. Specifically these 
are R(t) offered from the component, and R(t) offered from 
software-hardware binding. Table 3 describes the 
component/physical dependability properties in detail. The 

330 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 



properties that have the same description as in the architecture 
level are not listed here. 

Redundancy? 

Imperfect Switch 
Reliability of 

N Redundancy (N 

redundancy = No 

redundancy. Default = 
0.995 

For passive X W I  

Active redundancy (N) W I  
out of M) 
M Redundancy (N 
out of M) 
Reliability Offered 
with Redundancy 
Reliability Offered 
with Redundancy 
(Weibull) 
Calculated 
Reliability Offered 

Active redundancy W I  
(M) 
Calculated passive or C R O  
active redundancy 
Calculated passive or T R O  
active redundancy 

Result of software and C R O  
hardware binding 

performance analysis tool 
Table 3: Dependability Property Description at the 

Application ComponentRhysical Level 

(sw&hw) 
Calculated 
Reliability Offered 
(sw&hw) (Weibull) 

At this componentlphysical level, there exists the 
physical routing, binding and scheduling of the application to 
the hardware platform components, which results in a physical 
modeling graph. The application architecture model and 
application component/physical model appear in this graph as 
well as additional nodes representing the dependability of 
communication or routing components such as busses and 
networks in the hardware platform component/ physical 
model. Component redundancy or fault-tolerance is displayed. 
Complete dependability analysis and evaluation can take place 

Result of software and T R O  
hardware binding 

at this physical level, since all the required parameters are 
available. Figure 5 shows a snapshot at the physical level of a 
sub-system, Filter, mapping onto a DSPl component and its 
dependability attributes (shown at the right-hand side), as well 
as the architecture level modeling of the speech recognition 
application (shown at the top-middle). All the software 
components for the application are shown at the left-hand side 
of the figure. 

2.2. Dependability Analysis 
In this section, we show the dependability analysis 

for the speech recognition application at each level, starting at 
the Specification level. For simplicity, we choose to discuss 
only the Const (constant failure rate) mode. 

2.2.1 Specification Level 
At this level, the application requirements are: 
Overall system R(t) = 0.90, sub-system Audio An> 8z 

Filter Rsub(t)= 0.97, MTTF = 1E+5 hours, t (time of 
operation) = 9600 hours, and A(t) = 1 (non-repairable 
systedapplication). 

2.2.2. Architecture Level 
All the requirements from the higher level are 

obtained. The dependability offered at this level is an 
approximated (lower bound) failure rate for the application 
and the hardware-platform architectures. The failure rates for 
the application architecture Audio AD, Filter, Decode, and 
Text Conversion are chosen for this example to be: 2.083E-6, 
1.041E-6, 1.041E-6, and 1.562E-6 per hour, respectively, 
which results in a reliability of 0.98, 0.99, 0.99, and 0.985, 
respectively. Similarly, the hardware-platform architecture 
CPU, DSP, SGI, and a network type each has an approximate 

Figure 5: The Architecture and a Snapshot at the Physical Level of the Application 

2000 PROCEEDINGS Annual  RELIABILITY and MAINTAINABILITY Symposium 33 1 



failure rate and a reliability value associated with it. Let us 
assume that the reliability for CPU, DSP, SGI, and Ethemet 
Network is 0.97,0.98,0.98, and 0.90, respectively. 

At this level, the software application architectures 
are mapped onto the hardware-platform architectures, as 
shown back in Figure 4. The Audio A/D, Filter, Decode, and 
Text Conversion architectures are mapped onto the CPU, 
DSP, SGI, and CPU architectures, which result in a composite 
reliability of 0.95, 0.97, 0.97, and 0.9545, respectively. Note 
that each mapping is linked to the others by the network unit. 
All these mappings (with series connections) result in a 
system reliability 0.8532 (i.e., 0.95~0.97~0.97~0.9545), and 
the Audio A/D & Filter sub-system reliability of 0.9215 (i.e., 
0.95x0.97), assuming a perfect network connection. 

At this point, it is obvious that redundancy is needed 
in order to obtain the system reliability requirement R(t) = 
0.90 and the sub-system requirement Rsub(t) =0.97. Therefore, 
in our framework, we introduce a resource redundancy option 
into the application architecture level. For example, applying 
an extra set of resources at the Audio A/D mapping onto the 
CPU, and at the Filter mapping onto the DSP, as shown in 
Figure 5. The sub-system and the overall system have the new 
reliability of Rsub(t) = 0.9966 (i.e., (1-( 1-0.95)~)*( 1-( 1-0.97)~) 
), and R(t) = 0.9227 (i.e., 0.9975* 0.9991* 0.97* 0.9545), 
assuming a perfect network'connection. This analysis gives an 
approximate upper bound of the reliability offered at this 
level. 

Without our dependability integration model, this 
redundancy adjustment information is not available until the 
final stage of the design process, the physical level. This 
illustrates one major benefit of our design methodology: to be 
able to predict system dependability early in the 
systedapplication design stage, without needing the complete 
design information. These decisions are also inherited by the 
lower level. 

2.2.3. Component/Physical level 
At this level, the mapping of applications to the 

hardware platform components for system reliability has taken 
place. To find the best mapping, we perform a reliability 
analysis (ignoring performance modeling) using a technique 
called breadth-first search; where all possible selected paths 
are considered. For simplicity of illustration, each mapping 
unit, which contains system hardware, system software, and 
application software components is considered to have its 
reliability value as shown in Figure 6. Without redundancy, 
the overall analysis at this component/physical level is 
displayed in Figure 7; the sub-system Audio A/D & Filter and 
the overall system give 0.8579 and 0.6995 reliability, 
respectively, which do not meet reliability requirements. 

Using the redundancy information from the 
architecture level, at this level, we provide refinements of the 
redundancy choices, consisting of active (N out of M), and 
passive (with perfecthmperfect switch) redundancy. A simple 
example of a redundancy set is shown in Figure 8. Here, each 
active redundancy unit has a one-to-one mapping of the 
application onto a hardware resource. This gives the sub- 
system and the system 0.9742 and 0.9381 reliability values, 
respectively. The offered system reliability of 0.938 1 means 
that the system failure is 6.655E-6 per hour, and MTTF is 
150,258.26 hours (i.e., Ufailure rate) in the constant failure 
rate mode, which fulfills all the application dependability 
requirements. This is also shown in a comparison graph in 
Figure 9. 

The simple mapping algorithm described here made 
decisions based on constant failure rate for each resource. 
Time dependent failure rate characteristics for applications 
and hardware resources can be captured as well, with the 
Weibull distributions provided at each level in our design 
framework. The dependability analysis in this time dependent 
mode can be done using the same techniques as just described. 

L 

Figure 6: Mapping of the Application onto the hardware platform 

Text 

CPU-1 N1 N3 DSP- 1 N3 N1 SGI-2 N5 N4 CPU-2 

0.95 0.98 0.95 0.97 0.95 0.98 0.97 0.99 0.95 0.96 
0.8579 0.6995 

Figure 7:The Speech Recognition System after Mapping of the Application 
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Audio Filter Decode Text 

CPU-1 N1 N3 DSP-1 N3 N1 SGI-2 N5 N4 CPU-2 

0.9975 0.98 0.9975 0.9991 0.9975 0.98 0.9991 0.99 0.9975 0.9984 
0.9742 0.9381 

Figure 8: Speech Recognition System with Redundancy 

dependability analysis framework for the design of distributed 
real-time systems. 

1. 

0 2000 4OOO 6OOO 8000 1*1d 2. 

t time of option (hours) - Required 
+t.f Offered (with redundancy) 
-9- Offered (without redundancy) 3. 

Figure 9: Dependability Requirements and Dependability 
Offered using Constant Failure Rate Models for the 4. 

’ Speech Recognition Application 

In this framework, all the decomposition of 5. 

6. 

requirements (in parallel with the decomposition of the 
design) is performed from the top-down and estimates of 
reliability of sub-systems are propagated from the bottom-up. 
This gives the designer insight into the dependability 
properties of the system as it is being designed so that she can 
make informed design tradeoffs between cost, dependability 
and performance. As we have shown, with the redundancy 
information from the architecture level provided from our 
dependability integration model, the system designer can 
make decisions before the final stages of the design process 
achieving high quality designs in less time. 

7. 

8. 

3. FUTURE WORK 
9. 

We are working on developing an automated 10. 
dependability generation method in the framework model. The 
generation will be fully or selectively automatic depending on 
the user’s choice. Then we will determine consistency 
between reliability constraints in the design hierarchy of the 
systedapplication design process. In order to make sure that 
our dependability analysis framework captures the composite 
performance during synthesis of the system at all design 
levels, consistency and completeness checking algorithms 
must be developed. The algorithms must simplify the up and 
down consistency management of the dependability hierarchy, 
system design completeness verification, and perform 
dependability specification propagation and traceability. The 
results of this work will be a fully integrated performance and 

11. 

12. 

13. 

14. 
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