
Integrating Dependability Analysis into the Real-time System
Design Process

Naruemon Wattanapongsakorn University of Pittsburgh Pittsburgh
Steven Levitan University of Pittsburgh Pittsburgh

Key Words: Design technique, Dependability, Bathtub curve, Failure rate, Real-time system, Distributed system

SUMMARY & CONCLUSIONS

In this research, we are developing a design
framework for integrating dependability analysis into the
distributed, heterogeneous, fault-tolerant real-time system
design process. We focus on two dependability attributes:
reliability and availability. We are implementing this
framework on top of existing systems for the design of
distributed, real-time systems such as TimeWiz (Ref. 4). This
will allow system designers to evaluate system dependability,
while other system evaluation concerns, such as system
performance and design cost, are analyzed during every step
in the system design process. Our system dependability
analysis provides choices of system design based on the
dependability results. In addition, we perform system
dependability evaluation, or optimization, early in the system
design process, without needing complete design information.
In other words, with incomplete design information, we are
able to predict the behavior of system dependability. This will
significantly reduce the time and costs of real-time system
design.

1. INTRODUCTION

Real-time computing technology has recently
become one of the most demanding and challenging areas of
research in computing. Distributed, heterogeneous, fault-
tolerant real-time systems are required to handle complex real-
time tasks in modem life such as flight control systems,
industrial process control, the world-wide stock market
exchange, and computer games. Therefore, the dependability
of these systems must be analyzed. Dependability is a quality
of service (QoS) having the attributes: reliability, availability,
maintainability, testability, integrity, and safety.

During the last fifteen years, a great number of tools
and techniques for dependability analysis have emerged.
These tools are based on well-known techniques, such as
combinatorial analysis, static and dynamic fault-trees,
stochastic Petri Nets (Refs. 1, 20), as well as Markov (Refs.
14,25,29,30) and queuing models (Refs. 12-14,26). In order
to handle more complex modern systems the models for these
tools have been continuously enhanced. A representative set

of these tools is ADAPT (Refs. 9, 23), SHARP (Ref. 31),
RPM (Ref. 28), DEPEND (Ref. 17), DIFtree (Ref. 1 I), HARP
(Ref. 2), MEADEP (Ref. 3 3 , SAVE (Refs. 15, 18), SMART
(Ref. 6), SURE (Ref. 15), and UltraSAN (Ref. 32).

Among these tools, the first three tools provide both
performance and dependability evaluation. Among these three,
ADAPT and SHARPE, provide only system (physical) level
analysis, and RPM provides only a non-distributed (parallel)
processing model. None of the tools offer composite
performance modeling during synthesis (design and analysis)
of distributed real-time operating systems and applications at
all design levels.

In addition, current dependability evaluation tools
need significant effort to build a suitable dependability model
to complement the existing performance model for each tool.
For existing tools, errors in designing the dependability model
can cause differences between predicted performance and real
system performance. Further, during system dependability
analysis, small modifications may require a remodeling of the
entire system (Ref. 1).

To solve this problem, a design framework that
integrates dependability anzlysis into the system design
process must be implemented. To date, there are very few
such system design frameworks, and none of them support
design for all design levels in the system design process,
including evaluations of system redundancy, and dependency
in the failure behavior of coriponents. Furthermore, they do
not offer dependability analysis of systedapplication
“snapshots”. This capability allows the system designer to
observe the dependability behavior of any component in
operation at any point in the design hierarchy (Ref. 2- 3).

In our framework, we have developed a technique to
capture the dependability properties of hardware and software
components. We provide appropriate constantlnon-constant
failure rate models (Refs. 5-7) for dependability analysis,
evaluate functional dependencies, active (hot spares) and
passive (cold spares) redundancies which commonly exist in
any complex system. We also capture dependability analysis
of application snapshots, essentially at the physical level of
the system design process. This functionality allows the
designer to observe the dependability behavior of any event in
the system under design.

0-7803-5848-1/00/$10.00 0 2000 IEEE
2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 327

The rest of this paper is organized as follows. In the
next section, we describe our system design framework. Then,
we use an example applicatiodsystem to present our
dependability analysis research model, both the system-
modeling framework on which we base our work, and the
dependability analysis framework, which spans multiple levels
of the design process. Finally, in section 3, we present our
plans for future work.

2. THE SYSTEM DESIGN PROCESS FRAMEWORK

Although our methodology for integrating
dependability into the design process is general, the two
system design frameworks upon which we are basing our
work are the Systems Engineer Workbench (SEW2.0) (Refs.
4-5,34) and the TimeWiz design assistant tools (Ref. 36).

process. Then, the design process may repeat to meet the
dependability and system performance requirements. Any
change in the design process is automatically propagated from
the higher levels down to the lower levels.

2.1. An Example Application
To illustrate the way dependability analysis can be

integrated into the system design process, a simple example of
an application is presented as it is designed, starting at the
specification level (which includes the information of the
domain level) down to the architecture, and the
componentlphysical level. In this discussion, we focus mainly
on the dependability analysis of the application, assuming that
the application design process is taken care of by another
group of application developers from which the inputs of the
dependability analysis and evaluation are acquired. The

dependability analysis and evaluation would
Performance DeDendabilitv

Applicatlon Hardware Platform Application Hardware Platform

Domain Level

Specification Level

I Architecture Level Dependability of

Component Level
ArchitecGe Design

-----------r---------
Deoendabitv of

I Co&one& D&ign

Dependabilid of Physical
r--------- -----------

Physical Level

Dependability Analysis 11 I Pe::a- I I I
Figure 1: Dependability and System Design Process

Without going into a detailed explanation (Refs. 5,
37), in a generic design framework shown on the left hand
side of Figure 1, the domain analysis classifies the
performance requirements for both the software applications
and the hardware platform. The specification design process
creates a functional performance specification from the
domain requirements. The architecture design process
partitions the application into a set of components. The
component/physical design process maps applications onto
hardware components. The application componentlphysical
design process takes care of the binding, routing, and
scheduling of applications on hardware resources creating a
set of links or connections between the two models (Refs. 5,
34). We assume this generic model in the rest of this paper.

As shown in Figure 1, in our integrated tool, for each
level of system design process (from the domain level down to
the physical level) there is a corresponding dependability
model. Input parameters for each level of dependability
analysis are taken from the system .design process of the
application or the target-platform from the left-hand side of
the figure. The dependability analysis evaluates each
dependability level and reports back to each step of the design

be carried out incrementally in parallel with
the systedapplication design process.

Our example 'is a simple speech
recognition application running on a hardware
platform as shown in Figure 2. The system is
comprised of a computer system
infrastructure, as shown in Figure 2(a),
executing a set of real-time applications,
including the speech recognition application.
Note that the figure shows the potential
hardware resources available for this
application which are not all necessary. The
speech recognition application, as shown in
Figure 2(b), samples human speech, translates
it into a set of commands that the computer
can understand by performing analog to
digital conversion of the speech signal,
filtering or processing it, decoding the signal,
and converting it to a text format. Since the

speech application is CPU-intensive (Ref. 8). DSP (digital
signal processing) and SGI (a high performance workstation
such as a silicon graphics) servers are required to execute this
algorithm in real-time.

. U
(a) Hardware Platform

CPU- 1 DSP SGI CPU-2

(b) Application: A Simple Speech Recognition Application
Figure 2:Example Hardware Platform & Application (Ref.8)

328 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

We now discuss how we integrate dependability
analysis into the software application, and the hardware
platform models performing the modeling and analysis, level
by level. The following subsections describe each
levels.

of the

Domain Level

Software Application Hardware Platform
Specification Level

Architecture Level

Component Level

Phvsical Level

Figure 3: A Simplified Framework Model

Figure 3 shows a simplified picture of our example
application in the design framework. At the top level, all the
dependability requirements are not yet decomposed. At the
middle levels, extra abstraction levels can be added, as shown
by the dashed lines. All the physical mappings and bindings
are done last at the final stage, the physical level.

Figure 4 shows the speech recognition application as
it is represented in our system design process framework, level
by level. The mapping, binding, and scheduling is performed
and shown at the software application model.

requirements of a set of applications which may (or may not)
run concurrently on a specified hardware platform. This
requirement definition is decomposed and propagated down to
the next level in the hierarchy. For brevity, we do not show
details at this level.

2.1.2 Dependability Requirement Specification
This model is a detailed structure document, also

called a functional specification. The functional specification
indicates what the systedapplications should do and how
well they must work in terms of reliability and availability.

At this level, all dependability requirements of the
application are captured at both the software application and
hardware platform models, as shown in Figure 4 and Table 1.
In the figure and the table, the dependability requirements are
mean time to falure, MZTF, (hours), time range of operation, t ,
reliability, R(f) , and availability, A(?). The other properties
shown are obtained from the lower levels of the framework.

The dependability requirements of the application
have constant values. However, the dependability offered
from the lower levels in the hardware platform and application
models can be captured either in a constant failure rate mode,
or in a time-dependent failure rate mode using the Weibull
distribution parameters. The Weibull distribution is selected to
capture the dependability characteristics of a system/
component because it can model any stage in the "bathtub"
curve (Ref. 12), which is the most common failure behavior of
a component or system (Ref. 16). At this level, both of the
hardware platform and application specification models,
again, are decomposed and inherited in the next lower level.

2.1.1 Domain Dependability Requirement Definition
This level models the high level description of the

domain dependability requirements from the user's or
customer's point of view. These are the dependability

Software Application Hardware Platform

Figure 4: Example Design in the Framework

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 329

(hIS) I I I I I
MTlTLLevelOffered I M’ITFoffered I C l x I R I 0
(Const)
M’ITFLLevelOffered
(Weibull)
Time Range of

from lower level
M’ITFoffered T x R 0
from lower level
Total hours. of W I

Operationrt 0 ~ s) .

R(t) (scale 0-1)
Reliability LLevel
Offered (Const)
Reliabilitv LLevel

Reliability Requirement,
operation, t
R(t) C W I

R(t)offeredfrom C x R 0
the lower level
R(t) offered from T x R 0

parameter (T),Auto = Automatically generated, R/W
Input/ Output for dependability analysis

Reamrite , &d U 0 =

Table 1: Dependability Property Description at the
Specification Level

Offered (Weibull)
Availability
Requirement (scale 0-1)

2.1.3 Dependability of Architecture
At this level, the dependability properties for both

application software architecture and the hardware platform
architecture are observed. As shown in Figure 4, the software
application architecture consists of Audio A/D, Filter, Decode
and Text Conversion, and the hardware platform architecture
is made from CPU, DSP, SGI, and some Ethernet networks.

the’lower level
Act) W I

Name
Time Range of

) RequirFment I higher level I I I I I I

HGdware
Platform
Objectname A/H x R
Total hours of A/H X W I

N I I I 1 I I

ility Offered I Default valueor I A/H I C l x I W I I I
Redundancy
Reliability Offered
with Redundancy
LLevelReliabilitv

greater thari 1
Reliability A C x R O
offered
Renortedfiom A/H C x R 0

where AM = ApplicatiodHardware Platform, M = Mode which is either
constant (C) or time-dependent parameter (T), Auto = Automatically
generated, R N = Read Write, and YO = Input/ Output for dependability
analysis

Table 2: Dependability Property Description at the
Architecture Level

The dependability requirement of each architecture
unit in the hardware platform and application models are again
captured in either of two modes, a constant failure rate, or a
time-dependent failure rate using the Weibull failure
parameters, which provide a rough idea of the lower bound
(minimum) of the dependability characteristics of each
architecture unit. The dependability properties of an
architecture unit are described in detail in Table 2.

From the table, the dependability attributes consist of
requirements obtained from the higher levels, and
dependability offered at the architecture level, which are the
approximated failure rate and amount of redundancy of the
units. The other attributes shown are automatically monitored
and obtained from the lower levels. Note that the “amount of
redundancy” attribute is shown only at the software
application model, because binding and mapping of
applications onto hardware resources is done at the software
application model.

Dependability analysis can take place at this level by
comparing the dependability requirements of both the
software and hardware to see if the requirements are matched,
since the software is supported by the hardware resources.
Also, the application-or hardware requirements must be lower
than what the application or hardware platform architecture
can offer, or else a more highly reliable architecture (or
resource redundancy) must be used.

2.1.4 Dependability of Component/ Physical Design
At this level of the design process, the speech

recognition architecture model is decomposed into the speech
recognition componentlphysical model having
componentlphysical dependability requirements as inputs to
the dependability analysis of both the hardware platform and
the speech recognition application dependability of
componentlphysical models. AI1 the required types of
hardware and software components for the speech recognition
processing system are specified with known dependability
properties and requirements.

The software application components in the
application model are supported by the hardware platform
componentlphysical model. Thus the dependability properties
of the allocated resources from the specified hardware
platform components must meet the requirements of the
application componentlphysical model. The dependability
analysis is obtained at this component level both at the
hardware platform and the application models to check if all
the dependability requirements from the higher levels are still
fullfilled under the assumption that each component meets the
specified dependability requirements.

The dependability attributes of each component in
this level consist of requirements obtained from the higher
level, dependability offered at this level which are the failure
rate and activdpassive redundancy information. The other
attributes shown are automatically obtained. Specifically these
are R(t) offered from the component, and R(t) offered from
software-hardware binding. Table 3 describes the
component/physical dependability properties in detail. The

330 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

properties that have the same description as in the architecture
level are not listed here.

Redundancy?

Imperfect Switch
Reliability of

N Redundancy (N

redundancy = No

redundancy. Default =
0.995

For passive X W I

Active redundancy (N) W I
out of M)
M Redundancy (N
out of M)
Reliability Offered
with Redundancy
Reliability Offered
with Redundancy
(Weibull)
Calculated
Reliability Offered

Active redundancy W I
(M)
Calculated passive or C R O
active redundancy
Calculated passive or T R O
active redundancy

Result of software and C R O
hardware binding

performance analysis tool
Table 3: Dependability Property Description at the

Application ComponentRhysical Level

(sw&hw)
Calculated
Reliability Offered
(sw&hw) (Weibull)

At this componentlphysical level, there exists the
physical routing, binding and scheduling of the application to
the hardware platform components, which results in a physical
modeling graph. The application architecture model and
application component/physical model appear in this graph as
well as additional nodes representing the dependability of
communication or routing components such as busses and
networks in the hardware platform component/ physical
model. Component redundancy or fault-tolerance is displayed.
Complete dependability analysis and evaluation can take place

Result of software and T R O
hardware binding

at this physical level, since all the required parameters are
available. Figure 5 shows a snapshot at the physical level of a
sub-system, Filter, mapping onto a DSPl component and its
dependability attributes (shown at the right-hand side), as well
as the architecture level modeling of the speech recognition
application (shown at the top-middle). All the software
components for the application are shown at the left-hand side
of the figure.

2.2. Dependability Analysis
In this section, we show the dependability analysis

for the speech recognition application at each level, starting at
the Specification level. For simplicity, we choose to discuss
only the Const (constant failure rate) mode.

2.2.1 Specification Level
At this level, the application requirements are:
Overall system R(t) = 0.90, sub-system Audio An> 8z

Filter Rsub(t)= 0.97, MTTF = 1E+5 hours, t (time of
operation) = 9600 hours, and A(t) = 1 (non-repairable
systedapplication).

2.2.2. Architecture Level
All the requirements from the higher level are

obtained. The dependability offered at this level is an
approximated (lower bound) failure rate for the application
and the hardware-platform architectures. The failure rates for
the application architecture Audio AD, Filter, Decode, and
Text Conversion are chosen for this example to be: 2.083E-6,
1.041E-6, 1.041E-6, and 1.562E-6 per hour, respectively,
which results in a reliability of 0.98, 0.99, 0.99, and 0.985,
respectively. Similarly, the hardware-platform architecture
CPU, DSP, SGI, and a network type each has an approximate

Figure 5: The Architecture and a Snapshot at the Physical Level of the Application

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 33 1

failure rate and a reliability value associated with it. Let us
assume that the reliability for CPU, DSP, SGI, and Ethemet
Network is 0.97,0.98,0.98, and 0.90, respectively.

At this level, the software application architectures
are mapped onto the hardware-platform architectures, as
shown back in Figure 4. The Audio A/D, Filter, Decode, and
Text Conversion architectures are mapped onto the CPU,
DSP, SGI, and CPU architectures, which result in a composite
reliability of 0.95, 0.97, 0.97, and 0.9545, respectively. Note
that each mapping is linked to the others by the network unit.
All these mappings (with series connections) result in a
system reliability 0.8532 (i.e., 0.95~0.97~0.97~0.9545), and
the Audio A/D & Filter sub-system reliability of 0.9215 (i.e.,
0.95x0.97), assuming a perfect network connection.

At this point, it is obvious that redundancy is needed
in order to obtain the system reliability requirement R(t) =
0.90 and the sub-system requirement Rsub(t) =0.97. Therefore,
in our framework, we introduce a resource redundancy option
into the application architecture level. For example, applying
an extra set of resources at the Audio A/D mapping onto the
CPU, and at the Filter mapping onto the DSP, as shown in
Figure 5. The sub-system and the overall system have the new
reliability of Rsub(t) = 0.9966 (i.e., (1-(1-0.95)~)*(1-(1-0.97)~)
), and R(t) = 0.9227 (i.e., 0.9975* 0.9991* 0.97* 0.9545),
assuming a perfect network'connection. This analysis gives an
approximate upper bound of the reliability offered at this
level.

Without our dependability integration model, this
redundancy adjustment information is not available until the
final stage of the design process, the physical level. This
illustrates one major benefit of our design methodology: to be
able to predict system dependability early in the
systedapplication design stage, without needing the complete
design information. These decisions are also inherited by the
lower level.

2.2.3. Component/Physical level
At this level, the mapping of applications to the

hardware platform components for system reliability has taken
place. To find the best mapping, we perform a reliability
analysis (ignoring performance modeling) using a technique
called breadth-first search; where all possible selected paths
are considered. For simplicity of illustration, each mapping
unit, which contains system hardware, system software, and
application software components is considered to have its
reliability value as shown in Figure 6. Without redundancy,
the overall analysis at this component/physical level is
displayed in Figure 7; the sub-system Audio A/D & Filter and
the overall system give 0.8579 and 0.6995 reliability,
respectively, which do not meet reliability requirements.

Using the redundancy information from the
architecture level, at this level, we provide refinements of the
redundancy choices, consisting of active (N out of M), and
passive (with perfecthmperfect switch) redundancy. A simple
example of a redundancy set is shown in Figure 8. Here, each
active redundancy unit has a one-to-one mapping of the
application onto a hardware resource. This gives the sub-
system and the system 0.9742 and 0.9381 reliability values,
respectively. The offered system reliability of 0.938 1 means
that the system failure is 6.655E-6 per hour, and MTTF is
150,258.26 hours (i.e., Ufailure rate) in the constant failure
rate mode, which fulfills all the application dependability
requirements. This is also shown in a comparison graph in
Figure 9.

The simple mapping algorithm described here made
decisions based on constant failure rate for each resource.
Time dependent failure rate characteristics for applications
and hardware resources can be captured as well, with the
Weibull distributions provided at each level in our design
framework. The dependability analysis in this time dependent
mode can be done using the same techniques as just described.

L

Figure 6: Mapping of the Application onto the hardware platform

Text

CPU-1 N1 N3 DSP- 1 N3 N1 SGI-2 N5 N4 CPU-2

0.95 0.98 0.95 0.97 0.95 0.98 0.97 0.99 0.95 0.96
0.8579 0.6995

Figure 7:The Speech Recognition System after Mapping of the Application

332 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Audio Filter Decode Text

CPU-1 N1 N3 DSP-1 N3 N1 SGI-2 N5 N4 CPU-2

0.9975 0.98 0.9975 0.9991 0.9975 0.98 0.9991 0.99 0.9975 0.9984
0.9742 0.9381

Figure 8: Speech Recognition System with Redundancy

dependability analysis framework for the design of distributed
real-time systems.

1.

0 2000 4OOO 6OOO 8000 1*1d 2.

t time of option (hours) - Required
+t.f Offered (with redundancy)
-9- Offered (without redundancy) 3.

Figure 9: Dependability Requirements and Dependability
Offered using Constant Failure Rate Models for the 4.

’ Speech Recognition Application

In this framework, all the decomposition of 5.

6.

requirements (in parallel with the decomposition of the
design) is performed from the top-down and estimates of
reliability of sub-systems are propagated from the bottom-up.
This gives the designer insight into the dependability
properties of the system as it is being designed so that she can
make informed design tradeoffs between cost, dependability
and performance. As we have shown, with the redundancy
information from the architecture level provided from our
dependability integration model, the system designer can
make decisions before the final stages of the design process
achieving high quality designs in less time.

7.

8.

3. FUTURE WORK
9.

We are working on developing an automated 10.
dependability generation method in the framework model. The
generation will be fully or selectively automatic depending on
the user’s choice. Then we will determine consistency
between reliability constraints in the design hierarchy of the
systedapplication design process. In order to make sure that
our dependability analysis framework captures the composite
performance during synthesis of the system at all design
levels, consistency and completeness checking algorithms
must be developed. The algorithms must simplify the up and
down consistency management of the dependability hierarchy,
system design completeness verification, and perform
dependability specification propagation and traceability. The
results of this work will be a fully integrated performance and

11.

12.

13.

14.

REFERENCES

Balakrishnan, M., Trivedi, K., “Stochastic Petri Nets for the Reliability
Analysis of Communication Network Applications with Altemate-
Routing”, TR-96/06, March 1996.
From:http://www2.ncsu.edu/eos/info/ece_i w/ccsp/tech-reports/f
aculty/trivedi.html
Bavuso, S. J., et al., “HiReI Hybrid Automated Reliability Predictor
(HARP) Integrated Reliability Tool system (Ver. 7.0). HARP
Introduction and User’s Guide”, Vol. 1, NASA Technical Paper 3452,
Nov. 1994.
Bowles, J. B., “A Survey of Reliability-Prediction Procedures For
Microelectronic Devices, IEEE Transactions on Reliability”, Vol. 41,

Bradley K., Setliff D. E., Strosnider J. K., “Supporting Performance-
Aware Software Development”, Proceedings of the Australian Software
Engineering Conference, Oct. 1998.
Bradley K., Strosnider J.K., Setliff D. E., “A Formal Framework For
Integrated Real-time Analysis Algorithms Into a System Design
Process”, IEEE Real-time System Symposium, May 1998.
Ciardo, G., Miner, A. S., SMART “Simulation and Markovian
Analyzer for Reliability and Timing”, Proceedings of the 9”
International Conference on Modeling Techniques and Tools for
Computer Performance Evaluation and the 7” International Workshop
on Petri Net and Performance Models, pp. 41-43, Saint Malo, France,
June 1997.
Chatterjee, S., Strosnider J. K., “A Generalized Admissions Control
Strategy for Heterogeneous”, Distributed Multimedia Systems,
Proceedings of the ACM Multimedia 95, Nov 1995.
Chatterjee, S., “Distributed Pipeline Scheduling: A Framework for

N0.1.1992, pp. 2-12.

Design of Large-scale, Distributed, Heterogeneous Real-time Systems”,
Ph.D. Thesis, Camegie MeUon U., 19%.
Choi, C. Y., Johnson, B. W., Dugan, J. B., “Dependable System
Codesign Using Data Flow Models”, IEEE Proceedings of the Annual
Reliability and Maintainability Symposium, 1997, pp. 263-270.
Coit, D. W., Smith, A. E., “Reliability Optimization of Series-Parallel
Systems Using a Genetic Algorithm”, IEEE Transactions on Reliability,
Vol. 45, No. 2, June 1996, pp. 254-260.
Dugan, J. B., Venkataraman, B., Gulati, R., “DIFtree: A Software
Package for the Analysis of Dynamic Fault Tree Models”, Proceedings
IEEE Annual Reliability and Maintainability Symposium, 1997, pp. 64-
70.
Ebeling, C. E., An Introduction to Reliability and Maintainability
Engineering, The McGraw-Hill Companies,l997.
Elsayed, E. A., Reliability Engineering, Addision Wesley Longman,
Inc., 1996
Fricks, R., Telek, M., Puliafito, A., Trivedi, K., “Markov Renewal
Theory Applied to Performability Evaluation”, TR-96/1 I , March 1996.
F r o m : h t t p : / / w w w 2 . n c s u . e d ~ e o ~ i n f d e c e _ i n
aculty/trivedi.html

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 333

-

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

21.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Geist, R., Trivedi K. S., “Reliability Estimation of Fault-Tolerant
Systems: Tools and Techniques, Computer”, Vol. 23, NO. 7, July 1990,

Gera, A. E., “The Modified Exponentiated-Weibull Distribution for
Life-Time Modeling”, IEEE Proceedings of the Annual Reliability and
Maintainability Symposium, 1997, pp. 149-152.
Goswami, K. K., Iyer, R. K., “DEPEND: A Simulation-Based
Environment for System Level Dependability Analysis”, IEEE
Transactions on Computers, Vol. 46, No. 1, Jan. 1997, pp. 60-74
Goyal, A. et al., “The System Availability Estimator”, Proceedings of
the 16” International Symposium on Fault-Tolerant Computing, CS
Press, Los Alamitos, CA, July 1986, pp. 84-89.
Hoyland, A., Rausand M., System Reliability Theory: Models and
Statistical Methods, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons, Inc., 1994.
Hunter, S., Philip, T., Trivedi, K., “Combined Performance and
Availability Analysis of Switched Network Application”, TR-96/37,
October 1996.
From: http://www2.ncsu.edu/eos/info/ece~info/www/ccsp/tech~repo~f
aculty/trivedi.html
Iyer, R. K., Modulator, “Dependability of Commercial Systems”, IEEE
Proceedings of Fault-Tolerant Computing Systems, 1996, pp. 537-540.
Kececioglu, D., Reliability & Life Testing Handbook, Vol. 1, PTR
Prentice Hail, 1993.
Klenke, R. H. et al., “An Integration Design Environment for
Performance and Dependability Analysis”, Design Automation
Conference 97, Anaheim, CA, pp. 184-189.
Laprie, J.-C., Modurator, “Panel Session on Limits in Dependability”,
IEEE 23” International Symposium on Fault-tolerant Computing, 1993,

Logothetis, D., Mainkar, V., Trivedi, K., “Transient Analysis of Non-
Markovian Queues via Markov Regenerative Precesses”, TR-96/09,
March 1996.
From: http://www2.ncsu.ed~~/eoslinfo/ece~info /www/ccsp/tech-reports
/faculty/trivedi.html
Lyu, M. R., Editor in Chief, Handbook of Software Reliability
Engineering, IEEE Computer Society Press, McGraw-Hill, 1996.
MIL-HDBK-217F. Reliability Prediction of Electrical Equipment, 1995.
Nicol, D. M., Palumbo, D. L., Ulrey, M. L., “A Graphical Model-Based
Reliability Estimation Tool and Failure Mode & Effects Simulator”,
IEEE Proceedings Annual Reliability and Maintainability Symposium,

Platis, A. N., Limnios, N. E., Le Du, M., “Asymptotic Availability of
Systems Modeled by Cyclic Non-Homogeneous Markov Chains”, IEEE
Proceedings Annual Reliability and Maintainability Symposium, 1997,

Randell, B., Laprie, J.-C, Kopetz, H., Littlewood, B., (Eds.), Predictably
Dependable Computing Systems, ESPRIT Basic Research Series,
Springer, 1995.
Sahner, R. A., Trivedi, K. S., “Reliability Modeling Using SHARPE,
IEEE Transactions on Reliability”, Vol. R-36, No. 2, June 1987, pp.

Sanders, W. H., Obal 11, W. D., Qureshi, M. A., Widjanarko, F. K., “The
UltraSAN Modeling Environment, Performance Evaluation”, Vol. 24,

Sommerville, I., Software Engineering, Fifth Edition, Addison-Wesley,
1996.
Strosnider J.K., Bradley K., Setliff D.E., Saurav Chattejee, “An
Applicatioflarget-Platform CoDesign Approach”, Design Automation
Conference, submitted, June 1998, http://www.pitt.edu/-des/setliff.html
Tang, D, Hecht, M, Handal, J, Czekalski, L, “MEADEP and Its
Applications in Evaluating Dependability for Air Traffic Control
Systems”, Proceedings of the 1998 Annual Reliability and
Maintainability Symposium, Jan. 1998.
TimeWiz, “An Integrated Design Environment for Real-time Systems”,
TimeS ys Corporation, http://www .timesys . a m
Wattanapongsakorn, N., “Integrating Dependability Analysis into Real-
time System Design Process”, Ph.D. Thesis Proposal, University of
Pittsburgh, 1998.

pp. 52-61.

pp. 608-613.

1995, pp. 74-81.

pp. 293-297.

186-193.

NO. 1, Oct-Nov. 1995, pp.89-115.

-

BIOGRAPHIES

Naruemon Wattanapongsakorn, PhD student, EE
267 Benedum Engineering Hall,
University of Pittsburgh, Pittsburgh, PA 15261 USA

Internet (email): naruemon@ee.pitt.edu

Naruemon Wattanapongsakorn is a PhD candidate in electrical engineering at
the University of Pittsburgh. She received the B.S. degree in Computer
Engineering (1994) and the M.S. degree in Electrical Engineering (1995).
both from The George Washington University. Her research interests include
distributed system dependability analysis, real-time system modeling,
software fault-tolerance, and statistical analysis of system reliability. She is a
student member of the IEEE.

Steven P. Levitan, PhD, CS
348 Benedum Engineering Hall,
University of Pittsburgh, Pittsburgh, PA 15261 USA

Internet (email): steve@ee.pitt.edu

Steven P. Levitan is the Wellington C. Carl Professor of Electrical
Engineering at the University of Pittsburgh. He received the B.S. degree from
Case Western Reserve University (1972) and his M.S. (1979) and Ph.D.
(1984), both in Computer Science, from the University of Massachusetts,
Amherst. He worked for Xylogic Systems designing hardware for
computerized text processing systems and for Digital Equipment Corporation
on the Silicon Synthesis project. He was an Assistant Professor from 1984 to
1986 in the Electrical and Computer Engineering Department at the
University of Massachusetts. In 1987 he joined the Electrical Engineering
faculty at the University of Pittsburgh. His research interests include VIS1
architectures, optoelectronic computing systems, .parallel algorithm design,
and HDL simulation and synthesis for VISI. He is an Associate Editor of the
ACM Transactions on Design Automation of Electronic Systems. He is Chair
of the ACM Special Interest Group on Design Automation, a member of
OSA, and a senior member of IEEUCS.

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

http://www.pitt.edu/-des/setliff.html
http://www
mailto:naruemon@ee.pitt.edu
mailto:steve@ee.pitt.edu

