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Model abstraction reduces the number of states necessary to perform formal

verification while maintaining the functionality of the original model with respect to

the specifications to be verified.  However, in order to perform model abstraction, we

must extract the semantics of the model itself.  In this paper, we describe a method for

extracting VHDL semantics for model abstraction to improve the performance of

formal verification tools such as COSPAN.
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1. INTRODUCTION

Validating a design using formal verification methods is inherently

computationally intensive; as a result, only small designs can be verified.  To handle

large designs, model abstraction is necessary.  Model abstraction takes a model and

replaces it with a high-level description of non-deterministic automata that

encapsulates the behavior of the model it replaces.  Using this high-level abstract

representation, model abstraction reduces the number of states necessary to perform

formal verification and, thus, reduces the state space to be explored by formal

verification tools.

The traditional synthesis based technique in formal verification is to take a

behavioral VHDL model, synthesize the design using this behavioral model, and then

verify the resulting synthesis implementation of that design using various formal

verification engines such as COSPAN [1], SMV [2] or Vis [3].  A pictorial

representation of the synthesis based verification process is shown in Fig. 1(a).

The problem with the traditional synthesis based technique is that we are

validating the synthesized implementation instead of the original model of a design.

Also, there is a state space explosion problem due to registers used for temporary

variables.  More importantly, it is difficult to observe and trace the state of a variable

when multiple registers may be allocated for a single variable or when a single
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register may be allocated for multiple variables.  As a result, it is difficult to perform

abstraction because the behavioral semantics of the model are lost at the RTL level.

A better approach is to verify designs using an abstract state space.  Our

approach is a semantics based approach which extracts the semantics of the be-

havioral model, performs abstraction based on the semantics of the behavioral model,

and then verifies the resulting abstract model.  In our approach, semantic extraction

identifies the abstract state space for model abstraction, instead of exploring the state

space of the original, unreduced model.  Using this abstract state space, model

abstraction analysis identifies signals or parts of the original model for abstraction.  A

pictorial representation of the semantics based verification process is shown in Fig.

1(b).

The abstract state space identified by means of semantic extraction analysis is

determined by the parts of the model that exhibit memory semantics.  This is because

the memory semantics of the model ultimately determine the state space explored by

means of formal verification tools.  In this paper, we describe a method for extracting

VHDL [4] semantics for model abstraction to improve the perfor-mance of formal

verification tools such as COSPAN.  The remainder of the paper is organized as

follows.  First, we describe various aspects of VHDL semantics that our analysis tool

extracts from the VHDL models.  Afterwards, we present our control/data-flow

analysis techniques with respect to various VHDL semantics issues.  We then present

our analysis algorithms for memory semantics extraction and pre-abstraction

partitioning.  Finally, we present experimental results and conclusions.

2. SEMANTICS EXTRACTION



The memory semantics of the model ultimately determine the state space

explored by means of formal verification tools.  Therefore, to perform model

abstraction, we must first extract memory semantics from the model.  Our semantic

extraction technique is based on control /data-flow analysis of the VHDL model.

Control/data-flow analysis is a technique often used in compiler design for

various code optimizations.  For model abstraction, our control/data-flow analysis

technique has two objectives: memory semantics extraction and pre-abstraction model

partitioning.

Memory semantics extraction identifies both explicit and implicit memory

semantics in the model.  Explicit memory semantics analysis identifies signal or

variable feedback paths.  Feedback occurs when a signal or variable definition (e.g.,

assignment) has inputs that depend on its own value.  A feedback path requires a

memory element to maintain the value of the signal or variable so that it can be used

as an input to evaluate the next output value.

Implicit memory semantics analysis identifies signals that are assigned in some

control paths, but not to all control paths.  For example, a concurrent conditional

signal assignment without a default ELSE clause has implicit memory semantics and

requires a memory element to maintain the value of the signal.

Pre-abstraction model partitioning clusters portions of the model as specified by

a group of definitions for a particular signal or variable.  The resulting model

partitioning serves as an initial partition for the model abstraction step.  There are two

cases where pre-abstraction model partitioning can be applied: variables and signals.

For variables, a model may be partitioned based on variable lifetime so that

disjoint parts of the model can analyzed separately in the model abstraction step.  For

example, in the VHDL model shown in Fig. 2, the definition of the variable x at d1

and its use in the definition for the variable y at d4 are clearly disjoint from the

definitions of the variable x at d2 and d3 and its use within the WHILE loop at d3.  In

fact, the semantics of the model will be preserved if variable x is replaced with

another variable in either of the two define-use chains.

For signals, a model may be partitioned based on BUS signal sources so that

each source can be analyzed separately in the model abstraction step.  Sometimes,

several of these sources may be eliminated from a model if they are not related to the

properties being verified.  After model abstraction is performed, the abstractions for

each of the driving sources are merged together to form an abstract model of the BUS.



3. METHOD

Our technique for performing semantic extraction can best be explained in terms

of the rules for variable definition and use.  Variable define-use analysis is a

conservative strategy used to analyze sequential code and statically determine the set

of definitions reaching a particular point in a program [5].  For semantic extraction,

we modified the standard compiler technique with VHDL semantics for signals and

variables.

We define the following data-flow analysis terms:

dS: the set of definitions in statement S,

Da: the set of definitions for variable a,

gen[S]: the set of definitions generated that reach the end of S without

following paths outside of S,

kill[S]: the set of definitions overwritten that never reach the end of S,

in[S]: the set of definitions that reach the beginning of S, taking into account



control paths,

out[S]: the set of definitions that reach the end of S, taking into account control

paths.

Each of these data-flow sets is calculated based on the structure of the model and

VHDL semantics.

3.1 Variable Assignments

The VHDL variable assignment data-flow equations for single assignments, for

compound statements, for if-statements and for loops are shown in Fig. 3(a), 3(b), 3(c)

and 3(d), respectively.

Observe the rule for single variable assignments, shown in Fig. 3(a).  The

variable assignment (a: = b + c) is a definition of variable a.  Therefore, gen[S] is this

definition d.  However, this definition d for variable a kills (overwrites) all other

definitions of variable a in the program.  Therefore, kill[S] is the set of    definitions in

the program for variable a minus the current definition d.  Finally, out[S] is the set of

definitions generated by the statement (gen[S]) plus the set of definitions that reach

the beginning of the statement (in[S]) that is not killed by the statement (kill[S]).

The rule for compound statements, shown in Fig. 3(b), is a bit more subtle.  A

definition is generated by a compound statement S if the definition is generated by

statement S2.  It can also generated by statement S1, provided that it is not killed by the

definitions in statement S2.  Similarly, a definition is killed by a compound statement

S if the definition is killed by statement S2.  It can also be killed by statement S1,

provided that it is not generated by the definitions in statement S2.  The equations for

the in[S] and out[S] sets are more obvious.  The set of definitions that reach the

beginning of statement S1 (i.e., in[S1]) is the set of definitions that reach the beginning

of compound statement S (i.e., in[S1]).  The set of definitions that reach the beginning

of statement S2 (i.e., in[S2]) is the set of definitions that reach the end of statement S1

(i.e., out[S1]).  The set of definitions that reach the end of compound statement S (i.e.,

out[S]) is the set of definitions that reach the end of statement S2 (i.e., out[S2]).



The rule for if-statements is shown in Fig. 3(c).  Here, a definition is generated

by if-statement S (i.e., gen[S]) if it is generated by either the statement block of the if-

branch (S1) or the statement block of the else-branch (S2).  On the other hand, a

definition can be killed by if-statement S (i.e., kill[S]) if it is killed by the statement

blocks of both the if-branch (S1) and the else-branch (S2).  Consequently, if if-

statement S does not have an else-clause, then no definitions can be killed by if-

statement S2.  For the same reason, this rule applies to case-statements that do not

cover all possible cases.  Obviously, the set of definitions that reach the beginning of

if-statement S (i.e., in[S]) also reach the beginning of both statement blocks S1 and S2
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(i.e., in[S1] and in[S2]).  The set of definitions that reach the end of if-statement S (i.e.,

out[S]) is the sum of definitions that reach the end of statement blocks S1 and S2 (i.e.,

out[S1] and out[S2]).

Observe the rule for loops, shown in Fig. 3(d).  A definition is generated by a

loop S (i.e., gen[S]) if it is generated by the loop statement block (S1).  On the other

hand, a definition can be killed by loop S if the loop is executed at least once.

Otherwise, no definition can be killed by loop S3.  Since we can not statically analyze

whether or not a while-loop will execute at least once, no definitions can be killed by

a while-loop.  Similarly, a for-loop may or may not execute at least once depending

whether the loop parameter specification is a null discrete range.  Therefore, a

definition can be killed by loop S if we can statically determine that the loop

parameter specification is not a null discrete range.  Otherwise, no definitions can be

killed by a for-loop.  Unlike a while-loop or a for-loop, a repeat-loop (i.e., a loop

without an iteration scheme) will always execute at least once.  Therefore, a definition

killed by the repeat-loop statement block (S1) is also killed by repeat-loop S.  Since

the flow control at the end of the loop statement block goes back to the beginning of

the loop statement block, the set of definitions that reach the beginning of the loop

statement block (i.e., in[S1]) must include the set of definitions generated by the loop

statement block (i.e., gen[S1]).  Therefore, the set of definitions that reach the

beginning of the loop statement block (i.e., in[S1]) is the set of definitions that reach

the beginning of the loop (i.e., in[S]) plus the set of definitions generated by the loop

statement block (i.e., gen[S1]).

The variable assignment reaching definitions apply directly to subprograms

(FUNCTIONS and PROCEDURES).  However, a PROCESS statement is a

concurrent statement, so the list of sequential statements in the PROCESS block

executes continuously (i.e., whenever an event occurs on any of the signals in the

sensitivity list).  The flow control of this repeated behavior is similar to a loop

structure, so the in[S] and out[S] sets for a PROCESS block are modified accordingly.

Specifically, all the definitions reached by the beginning of the PROCESS block

(in[S1]) consist of all the definitions reached by the beginning of the PROCESS

statement (in[S]) plus all the definitions generated by the PROCESS block (gen[S1]).

The reaching definitions for the PROCESS statement (and other concurrent

statements) are presented in Section 3.3.

3.2 Sequential Signal Assignments
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According to VHDL semantics, sequential signal assignments update their values

at the end of a PROCESS block or at the beginning of a WAIT statement.  To handle

this delayed update effect, we define the post_gen[S], post_kill[S], post_in[S] and

post_out[S] sets as the posted reaching definitions to be updated later.  These

sequential signal assignments reaching definitions correspond to and are evaluated in

exactly the same way as the gen[S], kill[S], in[S] and out[S] sets for variable

assignments.  At the end of a PROCESS block or at the beginning of a WAIT

statement, these posted reaching definitions are integrated into corresponding gen[S],

kill[S], in[S] and out[S] sets.  The data-flow equations for updating the posted reach-

ing definitions are listed below:

gen[S2] = post_gen[S1] � (gen[S1] - post_kill[S1])                   (1)

kill[S2] = post_kill[S2] � (kill[S1] - post_gen[S1])                    (2)

out[S2] = post_gen[S1] � (in[S1] - post_kill[S1])                     (3)

For the data-flow equations listed above, S1 represents the WAIT statement or the

end of the PROCESS block while S2 represents the next statement after the WAIT

statement or the PROCESS block where the updated reaching definitions are

propagated.

The data-flow equations for updating the gen[S] and kill[S] sets are derived from

the rule for variable compound statements, shown in Fig. 3(b).  Eq. (1) states that the

set of definitions generated after the update is the posted set of generated definitions

plus the set of generated definitions that are not killed by the posted set of killed

definitions.  Similarly, Eq. (2) states that the set of definitions killed after the update is

the posted set of killed definitions plus the set of killed definitions that are not

generated by the posted set of generated definitions.  The data-flow equation for

updating the out[S] set is derived from the rule for single variable assignments, shown

in Fig. 3(a).  Eq. (3) states that the set of definitions that reached the end of this

statement after the update is the posted set of generated definitions plus the set of

definitions that reached the beginning of the statement that were not killed by the

posted set of the generated definitions.

3.3 Concurrent Signal Assignments

Concurrent statements may consist of concurrent signal assignments, such as

conditional signal assignment or selected signal assignments, component instantiation

and process statements.  All concurrent statements, by definition, run in parallel, so

the definitions generated by a concurrent statement can not be killed by definitions



generated by any other concurrent statement.  As a result, the in[S] and out[S] sets are

the sum of all the definitions generated by all the concurrent statements.  This is true

in all cases except for the process statement where a definition for a signal (e.g., a

sequential assignment) may kill other definitions within that process block hierarchy.

To capture the behavior of concurrent semantics, we define gen[B] and

kill[B] as the set of definitions generated and killed by the concurrent block B,

respectively.  By the definition of concurrency, gen[B] is also the in[S] and out[S] sets

for each of the concurrent statements in the block.  The data-flow equations for single

concurrent signal assignments, for process statements and for multiple concurrent

statements, are shown in Fig. 4(a), Fig. 4(b) and Fig. 4(c), respectively.

Observe the rule for single concurrent signal assignments shown in Fig. 4(a).

Like variable assignment, signal assignment (a < = b + c) is a definition of signal a, so



the gen[S] set is this definition d.  Since the definitions generated by a con-current

statement can not be killed by definitions generated by any other concurrent

statement, the kill[S] set is the empty set.  For the same reason, the set of definitions

generated by the entire concurrent block (i.e., gen[B]) is also the in[S] and out[S] sets.

The rule for process statements, shown in Fig. 4(b), is slightly different from the

rule for concurrent signal assignments.  Obviously, the gen[S] set for the process

statement is the same as the set of definitions generated by the process block B1 (i.e.,

gen[B1]).  However, unlike the rule for concurrent signal assignments, the kill[S] set is

not the empty set.  The kill[S] set is the same as the set of definitions generated by the

process block B1 (i.e., kill[B1]).  The reason is that the definitions for signals in the

process block come from the sequential signal assignments which may be killed by

any other definition within the process block hierarchy.  The in[S] and out[S] sets for

the process statement are the same as the in[S] and out[S] sets for the concurrent

signal assignment.

The rule for the entire concurrent block is shown in Fig. 4(c).  The set of

definitions generated and killed by the entire block (i.e., gen[B] and kill[B]) is the sum

of all of the definitions generated and killed by all of the concurrent statements in the

block, respectively.  The out[S] set is the set of definitions generated by the concurrent

block (i.e., gen[B]).

3.4 Component Instantiations and Subprogram Calls

The reaching definitions (gen[S], kill[S], in[S], and out[S]) for the component

instantiations and subprogram calls are calculated just like a signal or variable

assignment, depending on the object of each output parameter.  For example, if an

actual parameter (variable x) corresponds to a formal parameter (variable y) of a

subprogram, and if the formal parameter is of the mode OUT or INOUT, then a

definition for the actual parameter (variable x) is generated by the subprogram call.

Since definitions may be generated by a component instantiation or by a subprogram

call, then definitions may be killed in the same way as well.  From the gen[S] and

kill[S] sets, the in[S] and out[S] sets are calculated as if the component instantiation or

the subprogram call is a signal or variable assignment.

4. ANALYSIS ALGORITHMS

Our semantic extraction method consists of several analysis algorithms built

upon the control/data-flow analysis technique presented earlier.  Each algorithm

analyzes the statements in the VHDL model by traversing a hierarchical



representation of the model generated by our VHDL compiler front-end.  Each of the

analysis algorithm operates on a common data-structure.  The results generated from

each analysis are stored with each statement.

The reaching definitions are calculated first.  Since the in[S] and out[S] sets are

defined in terms of the gen[S] and kill[S] sets, the gen[S] and kill[S] sets are calculated

first for the entire model while the in[S] and out[S] sets are calculated in a second

pass.  These algorithms were outlined in Section 3.

The input dependency of each statement is evaluated next, using the reaching

definitions calculated earlier.  Explicit memory semantics are extracted through

feedback analysis by examining the input dependency of each assignment.  Implicit

memory semantics are extracted with control path analysis and input signal sensitivity

analysis.  Control path analysis examines signal assignments to determine if a path

exists where an output signal is not assigned.  Input signal sensitivity analysis

examines the input dependency of a sequential signal assignment and checks if all the

input signals for the assignment are sensitized.  Following memory semantics

extraction, pre-abstraction partitioning is performed.  Variable lifetime partitioning

examines the input dependency of the assignments and control expressions to form

disjoint groups of definitions for variables.  BUS signal partitioning examines the

output signals of each concurrent statement to identify the driving sources of BUS

signals.  To summarize, the pseudo-code for the control/data-flow analysis algorithm

is simply:

control/data-flow analysis {

gen_kill_sets();

in_out_sets();

input_dependency();

feedback_check();

control_path();

input_signal_sensitivity_check();

variable_lifetime_partitioning();

bus_signal_partitioning();

}

With an understanding of the overall VHDL semantics extraction method, we

present each of these analyses in the order of algorithm execution.

4.1 Input Dependency



A definition in a model has two types of dependencies.  First, a definition has

data dependency from the input signals or variables in the assignment expression.

Second, a definition has control dependency from the input signals or variables in the

control expressions of the entire control path.  Therefore, the input dependency of a

definition is the union of the data dependencies and control dependencies.  We define

the following terms:

data_depend[dS]: data-flow dependencies for the definition in statement S,

ctrl_depend[B]: control-flow dependencies for the statement block B,

input_depend[dS]: control/data-flow dependencies for the definition in statement

S.

The term data_depend[dS] is defined as the assignment expression dependency

for the definition in statement S.  The term ctrl_depend[B] is defined as the control

expression dependency in the entire control path going to the statement block B.  The

term input_depend[dS] is defined as the control and data dependency for the definition

in statement S.

 Due to the recursive nature of the dependencies, an iterative technique is

required to calculate all three dependencies.  Eq. (4)through Eq. (9) summarize the

iterative algorithm:

 Eq. (4), Eq. (5) and Eq. (6) represent the initial iteration for the three

dependencies, and they capture the first level of dependency.  In Eq. (4), the union

part of the equation collects all of the definitions for each input in the assignment

expression.  The intersection part of the equation keeps only those definitions that

reach the beginning of each assignment (i.e., in[S]).  Similarly, in Eq. (5), the union

part of the equation sums of all the definitions for each input in the control expression

for this block while the intersection part keeps only those definitions that reach the



beginning of each control expression.  The last union in Eq. (5) captures the control

path hierarchy by incorporating the control dependency from the parent block P4 In

Eq. (6), the input dependency for the definition in statement S is the sum of the data

dependencies and control dependencies.

Eq. (7), Eq. (8) and Eq. (9) represent the update iterations for the three

dependencies, and they capture recursive dependencies.  These three equations are all

alike, and they state that the dependency in the current iteration (i) is the sum of the

dependencies from each of the definitions in the dependency set calculated in the

previous iteration (i - 1).  The iteration stops when there is no change in any of the

dependency sets for all the definitions in the model.  In theory, it will take at most n

iterations, where n is the depth of the longest recursive dependency.

The result of input dependency analysis enables us to perform explicit memory

feedback analysis, input signal sensitivity analysis and variable lifetime partitioning.

We will discuss these tasks next.

4.2 Feedback Analysis

  Feedback analysis determines if a definition has inputs that depend on itself.

The term feedback[dS] is a boolean indicating whether the definition in statement S

contains feedback.  Eq. (10) summarizes the feedback analysis:

 The equation states that the definition dS contains feedback if the definition dS

itself is in the definition’s input dependency set.  Otherwise, dS does not contain

feedback.

To identify explicit memory semantics in a model, the algorithm performs the

feedback analysis on every sequential and concurrent assignment.

4.3 Control Paths

In the VHDL language, both concurrent and sequential signal assignments can

have implicit memory semantics.  Specifically, for concurrent signal assignments,

both selected signal assignments and conditional signal assignments, may have

implicit memory semantics, depending on whether all the conditionals are balanced or
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fully specified.  For the conditional signal assignment, a simple check for the absence

of the ELSE clause without a conditional expression will determine whether the

conditional signal assignment has implicit memory.  For the selected signal

assignment, the balanced conditionals check consists of verifying if all the cases for

the selected expression are fully enumerated and if the default case is specified.  If

neither condition is satisfied, then the selected signal assignment has implicit memory

semantics.

For sequential signal assignments, implicit memory analysis is a bit more

complicated, due to the fact that a sequential signal assignment does not update its

value until the end of a PROCESS block or at the beginning of a WAIT statement, and

to the fact that sequential assignments may overwrite one another.  As a result, a

simple balanced check of sequential signal assignments in conditional structures, such

as IF statements or CASE statements, will not suffice.  Instead, to determine whether

an output signal has implicit memory semantics, every control path must be examined

to check for a control path where the output signal is not assigned.  To solve this

implicit memory problem, we define the possible memory set (pm[B]) as the set of

output signals not assigned in the current sequential block hierarchy B:

pm[B]: the set of signals not assigned in statement block B.

The pm[B] set in each statement block represents signals not assigned within the

segment of the control path from the beginning to the end of the each statement block.

By combining the pm[B] sets from each control path hierarchically, using the data-

flow rules presented here, we can determine which signals are not assigned in every

control path.

In the control path analysis algorithm, the pm[B] set in each sequential statement

block is initialized to include all the output signals present in the entire PROCESS

block or SUBPROGRAM block hierarchy.  Next, the algorithm examines each of the

sequential blocks hierarchically and modifies the possible emory set pm[B] according

to the data-flow equations shown in Fig. 5.

The data-flow equation in Fig. 5(a) states that for each signal assignment in

block B, the output signal is removed from pm[B].  The data-flow equations for

conditionals are shown in Fig. 5(b).  For unbalanced conditionals, the pm[B] set is not

changed because a path exists where signals are not assigned.  On the other hand, for

balanced conditionals, we remove a signal from the pm[B] set in the current block B if

the output signal is assigned in each of the conditional blocks B1 and B2.  The data-

flow equations for loops are shown in Fig. 5(c).  For WHILE loops, the pm[B] set is



not changed because we can not statically determine for certain that a WHILE loop

will always execute.  Similarly, for FOR loops, the pm[B] set is not changed if we can

not statically determine whether the loop parameter specification is a null discrete

range.  However, a REPEAT loop will always execute at least once.  Therefore, we

remove a signal from the pm[B] set in the current block B if the output signal is

assigned in block B1 of the REPEAT loop.

At the end of the control path analysis, the pm[B] set for the PROCESS block or

SUBPROGRAM block is the set of signals not assigned in every control path.  These

signals have implicit memory semantics and require memory elements to maintain

their values in those control paths where they are not assigned.

4.4 Input Signal Sensitivity Analysis

An output signal in a sequential signal assignment may have implicit memory

due to unsensitized signals in its inputs.  Input signal sensitivity analysis identifies this

type of implicit memory by checking if every signal in the input dependency of a

sequential assignment is in the process sensitivity list.  If any of the input signals in

the input dependency are not in the process sensitivity list, then the output signal has

implicit memory due to unsensitized input signals.



4.5 Variable Lifetime Partitioning

Variable lifetime partitioning divides each variable definition set into disjoint

definition subsets based on where the definitions are used.  Each of the disjoint

definition subsets can later be analyzed as if it is defined as a separate variable in the

model abstraction step.  The pseudo-code for the partitioning algorithm is listed

below:

for each depend[dS]  {

        for each input in dS  {

                 groupinput = Dinput  depend[dS]

                 for each dj in groupinput  {

                          Group[dj] = Group[dj] �groupinput

                 }

        }

}

The algorithm examines every input dependency (input_depend[dS]) in the

model, and for every input dependency, it extracts the set of definitions used by each

input variable in the dependency set.  The term groupinput represents the set of

definitions used by a particular input variable in a definition in statement S.  For each

variable definition dj, the term Group[dj] represents the disjoint subset of definitions

for the same variable.  After collecting the set of definitions used by each input

variable, the result is a partitioning of the disjoint definitions in each variable

definition set.

For the VHDL model shown in Fig. 2, the definition set for variable x (Dx) is

{d1, d2, d3}, and the definition set for variable y (Dy) is {d4}.  The input dependency

for the definition at d4 is {d1}; therefore, groupd1 is {d1}.  However, the input

dependency for the definition at d3 is {d2, d3}, therefore, groupd2 is {d2, d3}, and

groupd3 is {d2, d3}.  As a result, the variable lifetime partitioning for variable x is

{d1} and {d2, d3}, as shown in Fig. 2 in Section 2.

4.6 BUS Signal Partitioning

As mentioned previously, a model may be abstracted by merging abstractions for

each of the sources driving the BUS signal.  To partition signals with multiple driving

sources (i.e., BUS signals) for analysis in the model abstraction step, we need to

identify any signal assigned in multiple concurrent statements.  The algorithm

identifies the BUS signals by counting the number of times an output signal is



assigned by concurrent statements in the model.  Partitioning is done by identifying

the BUS signals and the concurrent statements driving the signals.

5. RESULTS

We have implemented our VHDL semantics extraction tool using the

control/data-flow analysis method presented above.  To demonstrate how each of the

analysis algorithms extract memory semantics, we will present the results of semantic

extraction for the set of VHDL models shown in Fig. 6.  We have kept the models in

Fig. 6 small in order to simplify the discussion of various VHDL semantics issues and

the analysis algorithm that handles them.  In all the models, identifiers w, x, y and z

are signals and identifiers i, j, k and m are variables.  For discussion purposes, each of

the definitions ds in the models is enumerated as a comment after each signal or

variable assignment.

The results of semantic extraction performed on the models are shown in Table

1.  Column one of the table indicates the VHDL model of the semantic extraction

experiment.  Columns two and three indicate the definitions that have explicit

memory semantics due to data dependency and control dependency, respectively.

Columns four and five indicate signals that have implicit memory semantics due to

unbalanced signal assignments and unsensitized input signals, respectively.  Finally,

the results of variable lifetime partitioning and BUS signal partitioning are shown in

columns six and seven.

 Returning to the semantic extraction experiments, we will present our

experimental results starting with the model shown in Fig. 6(a).  In this model, the

two guarded blocks, b1 and b2, have two guarded signal assignments on signal z, at

d2 and d4.  They are the only definitions affected by the guarded expressions.  As a



result, the guarded signal assignment at d2 has explicit feedback due to control

dependency on the input signal z in the guarded expression.  Since signal z has

multiple signal drivers, we partition the signal between the two signal drivers.

The two models shown in Figs. 6(b) and 6(c) have the same nested control

structure.  The only difference between the two models is that variables i and j (Fig.

6(b)) are replaced by signals x and y (Fig. 6(c)).  They demonstrate the subtleties of

variable and signal assignments.  In the two models, both the elsif part and the else

part of the if-statement depend on the inputs of the elsif-expression and if-expression.

Specifically, for the two models, the definitions at d2 and d3 have control

dependencies on variables i and j (signals x and y).  Since each process block have an

implicit loop, the in[S] sets at d1, d2 and d3 are each {d1, d2, d3}.  As a result, there

is an explicit feedback due to data dependency at d1, and there are explicit feedback

paths due to control dependencies at d1, d2 and d3.  For the model with signal

assignments, a balanced conditional signal assignment check is performed.  Both

signals x and y (Fig. 6(c)) are not assigned in all of the control paths; thus, both

signals have implicit memory semantics.  Since the process sensitivity list is not

specified, all the input signals within the process block hierarchy are implicitly

sensitized.  Therefore, the input signal sensitivity check is not necessary.

The four models shown in Figs. 6(d), 6(e), 6(f) and 6(g) have the same control

structure with a nested if-statement within a case-statement.  They demonstrate the

subtleties of initial variable and signal assignments.  The two models shown in Fig.

6(d) (and Fig. 6(e)) are similar to the two models shown in Fig. 6(g) (and Fig. 6(f)),

with variables i, j and k replaced by signals x, y, and z.  The two models shown in Fig.

6(d) (and Fig. 6(g)) have an initial variable assignment (and signal assignment) at d5.

For the model shown in Fig. 6(d), definitions d1 and d2 have control

dependencies on input variable i from the case-expression, and definitions d3 and d4

have control dependencies on input variable i from the case-expression and input

variable k from the if-expression.  The definition for variable i at d5 kills the

definition for variable i at d3.  Therefore, the in[S] sets at d1, d2 and d3 are each {d1,

d2, d4, d5} while the in[S] set at d4 is {d1, d2, d3, d4}.  As a result, there is no

explicit feedback due to data dependency.  However, both definitions d3 and d4 have

control dependencies on variable k, and the in[S] sets at d3 and d4 include definition

d4.  Consequently, the definition at d4 has explicit feedback due to the control

dependencies on input variable k from the if-expression.



For the model shown in Fig. 6(e), removal of the variable assignment at d5

causes definitions d1, d2, d3 and d4 to have control dependencies on variables i and k

even though definitions d1 and d2 are not defined within the if-statement.  The reason

is that variable i, defined at d3, depends on input variable k from the if-expression.

Specifically, the in[S] sets for d1 d2, d3 and d4 are each {d1, d2, d3, d4}.  Therefore,

definitions d1, d2, d3 and d4 have explicit feedback due to the control dependencies



on variables i and k.

The model shown in Fig. 6(f) has data dependency and control dependency

similar to that presented in the previous model.  A balanced conditional signal

assignment check performed on the model reveals that paths exist where signals x and

z are not assigned.  Therefore, signals x and z have implicit memory semantics due to

unbalanced signal assignments in the conditionals.  Furthermore, an input signal

sensitivity check performed on the model reveals that both signals x and z depend on

input signals x, y and z.  However, only signal y is explicitly sensitized as specified in

the process sensitivity list.  Therefore, even if signals x and z have balanced signal

assignments in the conditionals, both signals still have implicit memory semantics due

to unsensitized input signals.

For the model shown in Fig. 6(g), the definition at d5 is the default assignment

for signal z because signal assignments do not update their values until the end of a

PROCESS block (or at the beginning of a WAIT statement).  Due to the effects of a

delayed update and the effects of the implicit loop within the process block, the in[S]

sets at d1, d2, d3, d4 and d5 are each {d1, d2, d3, d4, d5}.  Consequently, the

definitions containing explicit feedback due to control dependency include definitions

d1, d2, d3 and d4.  Due to the definition at d5, signal z is assigned in every control

path even though it is not explicitly assigned in the else-part of the if-statement.

Therefore, a balanced conditional signal assignment check reveals that only signal x

has implicit memory semantics due to unbalanced conditional signal assignments.  An

input signal sensitivity check reveals that all the input signals are included in the

process sensitivity list.  Hence, there are no implicit memory semantics due to

unsensitized input signals.

The model shown in Fig. 6(h) demonstrates variable lifetime partitioning.  In this

model, the variable i that is defined and used at d1, d2 and d3 is completely disjoint

from the variable i that is defined and used at d4, d5 and d6.  Therefore, a partitioning

can be made between these two groups of variable lifetimes.  The result of such a

partitioning is shown in Fig. 6(i).  Each definition from one model corresponds

directly to a definition in the other model.  The definitions at d2 and d5 in both

models have explicit feedback due to data dependency.  Also, the definition at d2 in

both models has explicit feedback due to control dependency in the loop- expression.

Furthermore, signal w in both models has implicit memory semantics due to an

unbalanced conditional signal assignment of the while-loop.  Similarly, signal z in

both models does not have implicit memory semantics due to the balanced conditional

signal assignment of the for-loop.



With the extracted explicit and implicit memory semantics, and with variable

lifetime and BUS partitioning of the model, we obtain the abstract state space and

initial partitioning necessary to perform model abstraction.  Analyzing the abstract

state space of the model and applying our model abstraction techniques [6], the result

is a model with abstractions that reduces the number of states necessary to perform

formal verification.  Using our semantics based model abstraction method, we have

obtained [6] a 102 to 1011 fold reduction in state space size and at least an 18 fold

reduction in verification time compared to those of unreduced models.  More

importantly, the abstract models allow us to verify some models that are too large to

verify without abstractions.

6. CONCLUSIONS

    In this paper, we have shown that in order to improve the performance of

formal verification tools such as COSPAN, model abstraction is necessary.

However, in order to perform model abstraction, we must obtain the semantics of the

model itself.  Therefore, we have implemented a VHDL semantic extraction tool that

analyzes both concurrent and sequential VHDL models.  The semantic extraction tool

is based on data-flow analysis techniques in compiler designs for code optimization.

The semantic extraction method identifies an abstract state space that is independent

of synthesis optimizations and is, therefore, appropriate for model abstraction and

verification before synthesis.
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